
m3: Accurate Flow-Level Performance Estimation
using Machine Learning

Chenning Li∗△, Arash Nasr-Esfahany∗△, Kevin Zhao⊗, Kimia Noorbakhsh△
Prateesh Goyal□, Mohammad Alizadeh△, Thomas Anderson⊗
△MIT CSAIL, ⊗University of Washington, □Microsoft Research

ABSTRACT
Data center network operators often need accurate estimates of
aggregate network performance, such as the frequency of poor tail
latency events, to guide network configuration – when and where
to add capacity as a function of increased load, which network
congestion control algorithm to use and how to tune its parameters,
and so forth. Unfortunately, existing methods for estimating aggre-
gate network statistics are either fast and systematically inaccurate,
or are detailed but too slow to be practical at the data center scale.

In this paper, we develop and evaluate a scale-free, fast, and
accurate model for estimating data center network tail latency
performance for a given workload, topology, and network config-
uration. First, we show that path-level simulations— simulations
of traffic that intersects a given path—produce almost the same
aggregate statistics as full network-wide packet-level simulations.
We use a simple and fast flow-level fluid simulation in a novel way
to capture and summarize essential elements of the path work-
load, including the effect of cross-traffic on flows on that path. We
use this coarse simulation as input to a machine-learning model
to predict path-level behavior, and run it on a sample of paths to
produce accurate network-wide estimates. Our model generalizes
over the choice of congestion control (CC) protocol, CC protocol
parameters, and routing. Relative to Parsimon, a state-of-the-art
system for rapidly estimating aggregate network tail latency, our
approach is significantly faster (5.7×), more accurate (45.9% less
error), and more robust.

CCS CONCEPTS
• Networks→ Network simulations; Network performance
modeling.

KEYWORDS
Network simulation, Data center networks, Approximation, Ma-
chine learning, Network modeling

ACM Reference Format:
Chenning Li∗△ , Arash Nasr-Esfahany∗△ , Kevin Zhao⊗ , Kimia Noorbakhsh△ ,
Prateesh Goyal□, Mohammad Alizadeh△ , Thomas Anderson⊗ , △MIT CSAIL,
⊗University of Washington, □Microsoft Research. 2024. m3: Accurate Flow-
Level Performance Estimation using Machine Learning. In ACM SIGCOMM
2024 Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney, NSW,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672243

Australia. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3651890.3672243

1 INTRODUCTION
Network simulation is widely used in the design, planning, and
operation of networks. Prominent simulators, e.g., ns-3 [46], OP-
NET [30], OMNET++ [51], and htsim [22], are packet-level discrete-
event simulators. They take every event at each network component
(e.g., packet arrival, timer expiration, etc.), serialize them in a single
event queue, and process them one by one. As a result, they are in-
herently slow and cannot keep upwith the size and speed of modern
networks. Recent work proposes new machine learning techniques
(e.g., MimicNet [54], DeepQueueNet [53]) and parallelization strate-
gies (e.g., Parsimon [55], DONS [19]) to accelerate and improve the
scalability of traditional simulators. However, these proposals still
operate at the packet level. As network speeds continue to increase,
packet-level models inevitably become too slow. For example, a
single data center switch chip can forward 25 billion packets per
second [52], making even the most efficient packet-level simulator
much slower than real-time for even a single switch.

Our goal is to design a performance model that overcomes the
limitations of packet-level simulation without sacrificing fidelity.
Most network simulations are not used to inspect the behavior of
individual packets or even individual flows. In many use cases, a
network designer is interested in certain performance metrics (e.g.,
network throughput, tail latency, flow completion time) and how
they are affected by changes in network conditions (e.g., workload
characteristics) and various design choices (e.g., congestion control
parameters, routing policies, job placement). Rather than simulate
every packet interaction, can we learn a model that predicts these
performance metrics using a higher level of abstraction?

We propose m3, a system that uses machine learning to predict
the flow-level performance of a data center network. m3 is trained
using ground-truth data from a packet-level simulator such as ns-
3.1 Given a network topology, a workload— specified as a sequence
of flows and their network paths— and optionally a set of design
parameters (e.g., congestion control knobs), m3 can predict the flow
completion time (FCT) distribution for a class of traffic, such as the
flows in a certain size range, flows sent from certain endpoints,
flows traversing certain paths, and so forth.

To understand m3’s design, let us consider a packet-level sim-
ulator like ns-3 as implementing a function that maps an input
workload and a network topology to some performance statistics
(Figure 1(a)). Our goal is to learn a fast and accurate approximation
of this function from training examples derived from packet-level

*Equal contribution
1The techniques we develop can in theory be used to learn a performance model based
on a real network, but we leave this to future work.

https://doi.org/10.1145/3651890.3672243
https://doi.org/10.1145/3651890.3672243
https://doi.org/10.1145/3651890.3672243

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

Simulator
f(x)

Network
Topology

Workload

FCT
Distribution

(a) Packet-level simulator is a complex function.

Path-level Simulation

m3
Network
Topology

Workload

FCT
Distribution

flowSim
ML ModelFeature

Map

(b) m3’s proposal

Figure 1: m3’s high-level architecture

simulations. Conceptually, this is a supervised learning problem.
However, two key challenges make it difficult.

First, the space of possible workloads and network topologies
is vast, and we cannot collect training data for every scenario. We
could perhaps consider only certain workloads or topologies during
training, but ideally, we want the model to generalize. Retraining for
each new scenario may end up being slower than using a packet-
level simulator. Moreover, there is a limit to the network scale
we can simulate to collect training data. Beyond a few hundred
nodes, packet-level simulators take hours to days for each second of
simulation time [55]. Training a complex model can easily require
hundreds of thousands to millions of examples, so it is impractical
for large-scale networks.

Second, it is not clear how to represent the inputs to the model
efficiently. The network topology is an arbitrary graph and the
workload is an arbitrary sequence of flows (with their arrival times,
sizes, and paths). Existing approaches such as using graph neural
networks to process network topology information [15, 16, 49] face
significant scalability and generalization challenges [12, 20] (a data
center network can have hundreds of thousands of nodes and links).
Similarly, processing millions of flows using standard sequence
models such as Transformers [50] is prohibitively expensive. Sim-
ple features such as the traffic load, flow size, and inter-arrival
time distributions, cannot capture complex workloads such as non-
stationary or correlated traffic patterns (e.g., small flows occurr in
bursts, large flows are spread out).

m3 addresses these challenges using two key ideas. First, it de-
composes a large-scale network simulation into a set of path-level
simulations. Each path-level simulation consists of only those flows
that traverse at least one link on a specific path. The flows travers-
ing the entire path are referred to as the foreground traffic, and the
other flows sharing a link with the foreground flows are referred
to as background traffic. Any flows that interact with background
traffic at other network links (not along the path) are ignored. m3’s
machine learning model is trained to predict the FCT distribution
of the foreground traffic in an arbitrary path-level simulation. To
estimate network-wide behavior, m3 samples several paths and
combines their predictions to derive the network-wide FCT distri-
bution.

Our use of path-level decomposition is inspired by Parsimon [55],
which proposed to approximate a large-scale network simulation

via independent link-level simulations that can be executed in par-
allel. Path-level decomposition is more accurate than link-level
decomposition (since it captures interactions between links along
a path), and our experiments show that it provides an accurate
approximation of network-wide performance for real-world data
center workloads and topologies. Using path-level scenarios as
the building block for network-wide performance estimation also
greatly simplifies m3’s learning task. We only need to collect train-
ing data for path scenarios, which is scalable since even large data
center networks have a modest maximum path length. Providing
topological information to the model is also straightforward using
a sequence of features associated with each link along the path.

m3’s second key idea is to use a fast flow-level simulator to
extract rich workload-related features suited to FCT performance
prediction. Given a path-level scenario consisting of sequences of
foreground and background flows, m3 first runs flowSim, a simple
simulator that assigns flows their max-min fair rate allocations
at each point in time and computes the flow completion times. It
then extracts a feature map of FCT statistics for flows of different
sizes, which serve as the primary input to the machine learning
model (Figure 1(b)). flowSim is extremely fast, e.g., it simulates
800K flows on a path in around 1 second (687× faster than ns-3).
However, bandwidth sharing models [33] such as max-min fairness
only provide a coarse approximation of the behavior of congestion-
controlled flows. Such models are particularly inaccurate for short
flows since they do not capture queuing dynamics and latency.
Nevertheless, we show that flowSim’s FCT statistics are excellent
features for predicting the network’s true behavior. The feature map
derived from flowSim is sensitive to many important aspects of the
workload, such as the volume, burstiness, and size characteristics
of the flows.

We train m3 using a diverse mix of synthetically generated path
scenarios. These synthetic scenarios capture the complex dynamics
of network workloads including flow size variations, burstiness
levels, congestion control protocols, and maximum link load con-
ditions, all within “parking-lot” topologies of 2 to 6 hops. In the
evaluation, we validate m3 against production workloads and actual
network topologies. A primary metric we use is the estimation error
of the p99 FCT slowdown— the ratio of the flow completion time for
different flow sizes, normalized to the ideal flow completion time for
that flow size on an unloaded network, at the 99th-percentile. We
also present FCT distributions for different flow sizes, which can be
used to derive alternate metrics such as packet latency and average
long flow throughput. We summarize our evaluation results below.

• Given a diverse mix of production workloads on a 32-rack, 256-
host fat tree topology, m3 delivers an average speedup of 5.7× in
simulation time over Parsimon [55], alongside better accuracy in
p99 FCT slowdown estimation. m3 demonstratesmean estimation
errors of 9.89%, compared to Parsimon’s 18.29%.
• On a larger scale 384-rack, 6144-host fat-tree topology, m3 com-
pletes the simulation in 40 seconds, compared to 1 minute and 24
seconds for Parsimon and 11.9 hours for ns-3, with a notable re-
duction in estimation error from 11.9% (with Parsimon) to 5.74%.
• m3 can adapt to a variety of workloads, topologies, and network
conditions. Even when trained on scenarios with varied conges-
tion control settings, m3 accurately forecasts tail FCT slowdown

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

for new, unseen parameters, highlighting its capacity for effective
counterfactual analysis.
m3’s code is available at https://github.com/netiken/m3. This

work does not raise any ethical issues.

2 INSIGHTS
In this section, we use data from ns-3 to motivate our model’s use
of path-level decomposition and workload featurization.

2.1 Path-level Decomposition
Modern hyperscalar data center networks can be enormously large,
with hundreds of thousands of servers and network links and thou-
sands of network switches. With network core and server link
speeds continuing to increase exponentially, accurately simulating
network behavior at scale with a packet-switched simulator is a
daunting task. In recent work on Parsimon [55], Zhao et al. suggest
decomposing the network into a set of independent queues repre-
senting each link, and then simulating the traffic traversing each
queue in parallel. If each queue experiences congestion indepen-
dently and transiently, the per-queue results can be combined to
approximate aggregate network behavior. However, this approxima-
tion breaks down with higher utilization, higher levels of oversub-
scription, and workloads with correlated endpoint behavior. In the
recent work on Mimicnet [54], Zhang et al. use machine learning to
train a generative model of the impact of clusters, or subsets, of the
network on other clusters. This allows fast, small scale cluster-level
simulations to be generalized to larger scale systems. However, this
work is limited to FatTree topology [3] with uniform traffic among
equal-sized clusters of machines.

Our work is inspired by these earlier efforts but aims to work
at scale for general workloads and topologies, without implicit
assumptions about traffic independence or topological regularity.
While Mimicnet showed that it is possible to train a model on a
specific topology, it is hard to envision how to train a model of an
entire network in a way that is topology independent, so that it
produces accurate aggregate performance even when we remove or
add a link or switch, or upgrade a portion of the network [38], or use
optical switching to dynamically change core link capacities [45].

Instead, we set ourselves a simpler problem. We decompose
the network into a set of paths; each path is a sequence of links
and switches connecting a source node with some destination, as
illustrated in Figure 2(a). A large scale data center network may
have billions of such paths; there may be hundreds of paths even
between the same source and destination node. Paths can be of
varying length (in a data center setting, they typically have an
even number of hops) with varying link capacities and traffic. We
call the traffic from the path’s source to its destination foreground
traffic; background traffic intersects the foreground traffic over at
least one hop. Importantly, the number of possible configurations
and workloads for individual paths is vastly smaller than that for
arbitrary networks, making the challenge of building an accurate
model tractable.

We make a simplifying assumption, that the performance of
foreground traffic is primarily determined by the latency, capacity,
and scheduling policies of the links along the path, along with the
characteristics of the foreground and background traffic. In other

Background

2

1 3

40

Foreground

(a) A network path

Mix-1 Mix-2 Mix-30

50

100

150

200

250

sa

m
pl

ed
 p

at
hs

2-hops 4-hops 6-hops

(b) Paths’ #hops distribution

50 0 50 100 150 200
relative p99 slowdown error (%)

0

20

40

60

80

100

CD
F

(%
)

mix-1
mix-2
mix-3

(c) Accuracy is workload robust

Mix-1 Mix-2 Mix-3
100
101
102
103
104
105
106

flo

ws
 p

er
 p

at
h

Foreground Background

(d) #flows on a path

2 4 6
#hops

20

10

0

10

20

(0, 100) [100, 500)[500,)
#foreground flowsre

la
tiv

e
p9

9
slo

wd
ow

n
er

ro
r (

%
)

(e) Accuracy is robust to path length and #foreground flows

Figure 2: (a) Illustration of foreground and background flows on a
path in a fat-tree network topology. (b) Distribution of hop counts
on sampled paths for different workloads. (c) Accuracy of path-level
ns-3 relative to full-network simulation for tail (99th percentile) slow-
down. (d) Number of foreground and background flows on sampled
paths for different workloads. (e) Path-level ns3’s error distribution
as a function of path length and number of foreground flows. Violin
plots depict the distribution of errors, with wider areas signifying
a higher density of errors at that value. The center box within the
violin captures the middle half of the data (25th to 75th percentile).

words, we assume that flows that do not intersect a path do not
significantly affect the behavior of foreground traffic. This is of
course an approximation. For example, the presence of upstream
bottlenecks can smooth cross-traffic, affecting its interaction with
the foreground flows. However, it is a weaker assumption than
some prior work, such as Parsimon which assumes independence
of individual queues, rather than individual paths [55].

To validate this approximation, we use ns-3 to simulate three sce-
narios, where each scenario is a simulation on a 32-rack, 256-host
topology with different traffic matrices and flow sizes drawn from
production workloads, along with different maximum link load and
oversubscription levels (Table 1) (setup details in §5.1). For each
scenario, we simulate 10 million flows with Equal-Cost Multi-Path
(ECMP) routing using ns-3. We randomly sample 500 paths with
the probability proportional to the number of foreground flows

https://github.com/netiken/m3

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

Scenario #Flows Traffic Max load Workload Oversub ns-3 Parsimon ns-3-path
p99 sldn time p99 sldn time p99 sldn time

Mix 1
10M

Mat A 42.46% CacheFollower 4-to-1 4.565 41.70h 5.023 345s 4.527 11.50h
Mix 2 Mat B 28.46% WebServer 1-to-1 4.602 9.648h 4.893 65s 4.504 1.781h
Mix 3 Mat C 73.83% WebServer 2-to-1 13.891 8.064h 15.24 40s 13.07 0.566h

Table 1: Comparison of the 99th-percentile flow completion time (FCT) slowdown (sldn) and computation times for 10 million flows for
different simulation methods, workload, and oversubscription scenarios. Configuration is the same as Section 5.2.

they carry, with replacement. This selection is further explained
in §3.2. The distribution of hop counts of these paths is shown
in Figure 2(b). For each selected path, we simulate its foreground
and background flows, again using ns-3, but excluding the flows
that do not intersect that path. We call this approach ns-3-path.
When we compare the per-path results from ns-3 with ns-3-path
in Figures 2(c) and 2(e), we find that this approach has high ac-
curacy and is robust to different scenarios, hop counts, and the
ratio of foreground to background flows. We then aggregate the
flow completion time slowdown across the 500 sampled paths from
ns-3-path and compare that against the network-wide aggregate
statistics from ns-3. Table 1 shows the p99 tail latency slowdown
of both methods across the three sample scenarios. ns-3-path has
an average p99 slowdown estimation error of only 2%. However,
like ns-3, ns-3-path is slow. Since ns-3-path must simulate all flows
intersecting the foreground traffic at the packet level, its runtime
is nearly the same as the full ns-3 simulation. Parsimon is much
faster but less accurate than ns-3-path.

2.2 Workload Featurization
Another key aspect of our approach is to use flow-level simula-
tion to quickly characterize and summarize path-level workload
information as input to a machine learning model. Even when we
narrow our focus to an individual path, there are hundreds of thou-
sands of flows and millions of packets intersecting and affecting
the performance of foreground traffic on the path. The path level
workload is a long sequence of foreground and background flow
arrival times and sizes. Even if we were to try to use that data
to train a model, it is not clear how to featurize the workload [5]
and represent it as input to a model in a way that generalizes to a
sufficiently large space of workloads. Simple features such as flow
size and inter-arrival time distributions are plausible choices but
insufficient. For example, marginal distributions of the flow size
and inter-arrival time cannot represent the joint distribution of flow
size and inter-arrival times, e.g., whether we have bursts of large
or small flows. This approach also cannot model non-stationary or
diurnal arrival patterns, something that is trivial in ns-3.

We observe that a max-min flow-level simulation [37] can cap-
ture much of what we are interested in with respect to workload
characterization. Rather than use hand-crafted features based on
statistical properties of the workload, we simulate the workload
in a flow-level simulator and summarize the attained performance
characteristics in a compact feature map. Our hypothesis is that
the performance observed in flow-level simulation provides good
features for characterizing the relevant properties of the workload.
To test this hypothesis, we built a fast max-min flow-level simula-
tor called flowSim (Algorithm 1 in Appendix A); flowSim assumes

“fluid” flows that proceed at a uniform rate defined by the max-min
fair-share rate given the other flows along the path. A flow’s rate is
recalculated after the arrival or completion of any competing flow.
The flow completes when its rate consumes the flow size, plus a
topology-specific end-to-end latency factor.

For characterizing traffic along a path, flowSim offers a number
of benefits:
• It operates at the flow-level abstraction, and its computational
complexity increases based on the combined number of fore-
ground and background flows along a given path.
• Unlike ns-3 which must model switch queueing, packet mark-
ing/dropping, and endpoint congestion control, flowSim involves
only basic calculations that are fast and easy to use.
• Although it does not model queuing effects, latency interactions,
or the impact of congestion control protocols, and as we show
later it is not accurate for small flows (Figure 6), flow-level sim-
ulation creates a rich representation capturing the bandwidth
interaction of flows.
To illustrate this workload representation, Figure 3 shows the

flow completion time (FCT) slowdown computed by flowSim for
a single link. The heatmap shows the FCT slowdown for flows of
each bucket size (y-axis), using percentile buckets (x-axis) to cap-
ture the FCT slowdown distribution. Thus, the right hand side of
each heatmap shows the 99th-percentile tail latency for each flow
size; the left its 1-percentile latency. All heatmaps in the middle
column use the CacheFollower size distribution, a burstiness level
of 𝜎 = 1.5, and a maximum link load of 50% (these parameters
are further explained in §5.1). In the first row, traffic burstiness
increases from left to right. As evident by the figure, increasing the
burstiness increases the tail slowdown for small flows and almost all
slowdown percentiles for large flows. The second row shows the im-
pact of increasing load. This has an effect similar to burstiness, but
if we look closer, the effect of increasing burstiness is more skewed
across different size buckets. The third row shows the impact of
workload; despite running at the same max link load and burstiness
level, different workloads induce different FCT slowdown distri-
butions. This simple example illustrates the effectiveness of using
flow slowdown statistics under max-min flow-level simulation for
featurizing the workload. FCT slowdown distributions (across dif-
ferent flow sizes) are a compact representation sensitive to many
aspects of the workload, allowing a machine learning model to pick
up on the differences between workloads with distinct behavior
and produce accurate slowdown estimates.

3 SYSTEM ARCHITECTURE OF M3
m3 uses machine learning to predict flow performance distributions
in data center networks. Its efficiency and generality are supported

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

20% 40% 60% 80% 100%

(0, 250B)
(250B, 500B)
(500B, 750B)
(750B, 1KB)
(1KB, 2KB)
(2KB, 5KB)

(5KB, 7.5KB)
(7.5KB, 10KB)
(10KB, 50KB)

(50KB, INF)

(a) 𝜎 = 1.0

20% 40% 60% 80% 100%

(b) 𝜎 = 1.5

20% 40% 60% 80%100%
1

2

3

4

5

FC
T

slo
wd

ow
n

(c) 𝜎 = 2.0

20% 40% 60% 80% 100%

(0, 250B)
(250B, 500B)
(500B, 750B)
(750B, 1KB)
(1KB, 2KB)
(2KB, 5KB)

(5KB, 7.5KB)
(7.5KB, 10KB)
(10KB, 50KB)

(50KB, INF)

(d) load=20%

20% 40% 60% 80% 100%

(e) load=50%

20% 40% 60% 80%100%
1

2

3

4

5

FC
T

slo
wd

ow
n

(f) load=80%

20% 40% 60% 80% 100%

(0, 250B)
(250B, 500B)
(500B, 750B)
(750B, 1KB)
(1KB, 2KB)
(2KB, 5KB)

(5KB, 7.5KB)
(7.5KB, 10KB)
(10KB, 50KB)

(50KB, INF)

(g) Hadoop

20% 40% 60% 80% 100%

(h) CacheFollower

20% 40% 60% 80%100%
1

2

3

4

5

FC
T

slo
wd

ow
n

(i) WebServer

Figure 3: Distribution of flow completion time (FCT) slowdown (x-
axis) computed by flowSim for a single link simulation for different
flow size buckets (y-axis). The baseline workload is given by the
middle column: CacheFollower size distribution, burstiness level of
𝜎 = 1.5, and maximum link load of 50%. Each row varies a single
dimension of the workload.

by two key ideas: 1) decomposing large networks into indepen-
dent paths and 2) extracting rich workload features with flow-level
simulation. This section describes how m3 implements these ideas.

3.1 High-Level Overview
Figure 4 illustrates m3 ’s architecture. Given the traffic workload
and the network topology, m3 first decomposes 1 the network
topology into independent paths and, for each path, identifies all
foreground and background flows. To reduce the number of paths
that must be simulated, m3 uses weighted sampling to select a
representative sample (§3.2). The sampled paths are used for path-
level simulations 2 , which, owing to their independence, can be
executed in parallel. Each path-level simulation uses an efficient
max-min fair sharing algorithm [33, 37] called flowSim 3 to com-
pute initial FCT slowdown estimates, separately for foreground
and background traffic. These estimates are then translated into a
feature map 4 used as input to a machine learning model (§3.3).
To account for different network configurations such as the choice
of congestion control protocol and bandwidth-delay product, the
feature map is combined with network specifications 5 . Then, m3
uses machine learning to refine its predictions of FCT slowdowns
for foreground traffic to match the ground truth 6 from ns-3-path
(§2.1), factoring in the dynamics of the foreground and background
traffic, queueing delays, and the congestion control protocol (§3.4).
The above process is carried out once for each sampled path (in
parallel). Once all results are obtained, m3 aggregates them 7 into

Traffic
Workload

Network
Topology

3.5 Aggregate Estimates

Network-wide Slowdown

Query

 3.3 Quick
flowSim

Network Specifications

Feature
Map

 3.4 ML
Correction

Groundtruth Slowdown

Path-level
Slowdown

3.2 Generate Path-level Sim.§ §

§ §

m3

Path-level
Simulation

?

?
?

?

?
?

?

?

Figure 4: m3’s workflow: Inputs (grey boxes), outputs (purple
boxes), intermediate artifacts (parallelograms), and core components
(rounded boxes).

network-wide performance metrics (§3.5). Lastly, m3 offers an in-
teractive user interface 8 , supporting targeted queries that can
enhance network management decisions.

3.2 Generating Path-Level Simulations
We begin by specifying the path-level simulation, which consists
of a workload and a topology.
Path-Level Specification. Given a full network topology and a
set of flows, m3 uses the flows’ routes to associate each link with
the flows traversing it, assuming static routes known in advance.2
A path is a sequence of links, and its path-level workload consists of
all flows that traverse any link in the path. The flows’ arrival times
and sizes are unmodified. We distinguish between foreground flows,
which traverse the entire path, and background flows, which only
intersect the path at one or more (but not all) hops (Figure 2(a)).
More precisely, suppose 𝑃 = (𝑙1, 𝑙2, . . . , 𝑙𝑛) is a path that consists of
𝑛 links, let F be the set of all flows, and let traverses(𝑓 , 𝑙) be a
predicate which is true when a flow 𝑓 ∈ F traverses a link 𝑙 ∈ 𝑃 .
The set of foreground flows 𝐹 for path 𝑃 is

𝐹 ≜ {𝑓 ∈ F | ∀𝑙 ∈ 𝑃 : traverses(𝑓 , 𝑙)}, (1)

and the set of background flows 𝐵 is

𝐵 ≜ {𝑓 ∈ F | 𝑓 ∉ 𝐹 ∧ ∃𝑙 ∈ 𝑃 : traverses(𝑓 , 𝑙)}. (2)

The goal of path-level simulations is to predict the performance of
foreground flows in 𝐹 given background flows in 𝐵 (context), for
later downstream processing. §3.4 describes how these outputs are
formatted and used.

Each path also has a path-level topology which contains only the
nodes and links on the path, as well as whatever other nodes and
links are needed to support the background traffic. For brevity, we
refer to the links on the path as original links, and all other links
as synthetic links. Conceptually, a path-level topology is a parking
lot topology like the one shown in Figure 7(a). In this figure, the
original links are the ones connecting purple nodes, and all others
are synthetic. To avoid introducing artificial contention among
background flows, each background flow connects to the point
where it joins/exits the foreground path with a bandwidth equal to
its source/destination capacity.
2This assumption does not hold in case of packet-spraying [9] or flowlets [1].

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

0.2 0.4 0.6 0.8 1.0
Total #paths (M)

0

20

40

60

80

100

CD
F

(%
)

0 10 20 30 40 50
Magnitude of relative

p99 slowdown error(%)

0

20

40

60

80

100

CD
F

(%
)

Parsimon
#sampled paths=100
#sampled paths=500
#sampled paths=1K
#sampled paths=10K

Figure 5: (Left) Distribution of the number of active paths across 192
workloads on a 32-rack, 256-host fat-tree topology; (Right) sampling
error distribution shrinks quickly when increasing the number of
sampled paths.

Weighted Path Sampling. m3’s path-level decomposition presents
an additional challenge: the number of paths grows rapidly with
network size. Figure 5(a) shows a CDF of the number of populated
paths when simulating 192 different workloads on a 32-rack, 256-
host topology (see §5.1). Even on small topologies, the number
of populated paths can be in the hundreds of thousands, and it is
prohibitively expensive to simulate each one. To reduce the number
of simulated paths, we use a weighted sampling strategy wherein
the probability of sampling a path 𝑃 is proportional to the number
of foreground flows on 𝑃 , with replacement (a popular path may
appear in the sample more than once).

To investigate the sensitivity of aggregate slowdown to the num-
ber of sampled paths, we first run 192 different scenarios in ns-3.
Then, for each scenario, we sample different numbers of paths using
the strategy described above. For each set of sampled paths, we
aggregate the foreground flows and compute the p99 FCT slow-
down. We then compare the p99 slowdown of the sampled paths to
the p99 slowdown of the entire network to derive a relative error.
Figure 5(b) shows the cumulative distribution function (CDF) of the
relative p99 slowdown error for different path sample sizes. We ob-
serve that sampling 100 paths is enough to exceed Parsimon’s [55]
accuracy; sampling 500 paths bounds the relative p99 slowdown
error to within 10%.

3.3 Quick Estimation via flowSim
To produce initial FCT estimates for the path-level topologies, m3
uses a simple simulator, which we call flowSim, that assigns flows
their max-min fair rate allocation [33, 37] at each point in time.
Appendix A has the implementation details.

Figure 6 shows that flowSim provides good estimates of FCT
slowdown for large flows exceeding 10KB since the performance of
DCTCP (the congestion control protocol used in these experiments)
is reasonably modeled as bandwidth sharing for large flows. How-
ever, flowSim underestimates the FCTs of short flows, especially
in the tail of the distribution, because it does not model queueing
dynamics. The next section describes how we use machine learning
to reduce this error.

1 2 3 4 5 6 7 8
FCT slowdown

80
85
90
95

100

CD
F

(%
)

ns-3
flowSim
flowSim-sampled
m3

(a) flow size ∈ (0, 1KB]

2 4 6 8 10 12 14 16
FCT slowdown

80
85
90
95

100

CD
F

(%
)

(b) flow size ∈ (1KB, 10KB]

0 2 4 6 8 10 12 14 16 18
FCT slowdown

80
85
90
95

100

CD
F

(%
)

(c) flow size ∈ (10KB, 50KB]

0 2 4 6 8 10 12 14 16 18
FCT slowdown

80
85
90
95

100

CD
F

(%
)

(d) flow size ∈ (50KB,∞)

Figure 6: Distribution of FCT slowdown for different flow size buck-
ets from ns-3, flowSim, and m3 on a 4-hop parking-lot topology

3.4 Improving Estimates with Machine
Learning

m3 uses flowSim’s initial estimates to create feature maps as input
to a machine learning model. The foreground estimates are refined
by machine learning, incorporating the dynamics of queueing and
congestion control, while the background estimates are used as
context to help the model produce accurate predictions for the
performance of foreground traffic.
Deriving FeatureMaps fromflowSim’s FCT Slowdown. flowSim
estimates FCT slowdowns for all flows in the path-level workload,
both foreground and background. The number of background flows
can be very large, as shown in Figure 2(d). We wish to refine these
estimates with machine learning, but what should the features be?
Processing large numbers of flows directly using standard sequence
models such as Transformers [50] is prohibitively expensive. On
the other hand, statistical features like traffic volume, mean flow
size, and inter-arrival times may not capture enough workload
dynamics, as discussed in §2.2.

To balance efficiency against fidelity, m3 converts flowSim’s
estimates into concise feature maps, as shown in Figure 7(a). Given
a path 𝑃 = (𝑙1, 𝑙2, . . . , 𝑙𝑛) with 𝑛 links and a set of foreground flows
𝐹 (the red solid line) the feature map𝑀 is:

𝑀𝐹
𝑠,𝑝 = {Sldn(𝑓) | 𝑓 ∈ 𝐹, size(𝑓) ∈ bucket𝑠 , percentile(𝑓) = 𝑝 } (3)

where m3 first categorizes foreground flows into 𝑠 buckets based
on the size of each flow. Within each bucket 𝑠 , m3 records the slow-
down (Sldn) predicted by flowSim across 𝑝 fixed percentiles. The
final feature map has dimension 𝑠 × 𝑝 , represented by the orange
rectangle. By default, the feature map has 10 flow size buckets,
ranging from flows with a single packet under 250B to flows ex-
ceeding 50KB, as shown in Figure 3. Additionally, it includes 100
fixed percentiles, ranging from 1% to 100% in 1% increments.

The performance of the foreground flows is also affected by the
amount and character of the background traffic (shown as blue
dotted lines). For each link along the foreground path, m3 cre-
ates a similar feature map (flowSim computed FCT slowdown of
dimension 𝑠 × 𝑝) for the background flows traversing that link.

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

21 3 40

a b c

A B C

Background
Feature

Foreground
Feature

Foreground
Flows

Background
Flows

(a) m3 uses path-level simulations with flowSim to generate compact fore-
ground and background features for its ML model.

Background
Context

flowSim
Flow Size

Flow FCT
Slowdown

Network
Specifications

Foreground

Background
Link-1 Link-n... ... Transformer

BDP CC cc-param ...

F
ea

tu
re

C
o

n
te

xt
S

p
ec

s

Target Path

MLPm3's Slowdown Distribution

? ? ?
?

??

Foregournd
Feature

? Specs

Groundtruth
Slowdown

? Train

(b) m3’s ML model predicts FCT slowdown distribution for the network
configurations of interest using flowSim generated features.

Figure 7: Design of path-level m3

This yields 𝑛 contextual feature maps (represented by blue rect-
angles) {𝑀𝐵𝑙1

𝑠,𝑝 , . . . , 𝑀
𝐵𝑙𝑛

𝑠,𝑝 }, one for each hop in an n-hop path 𝑃 =

(𝑙1, 𝑙2, . . . , 𝑙𝑛).
Refining flowSim’s FCT Slowdown Estimations. Figure 7(b)
shows howm3 refines flowSim’s FCT slowdown estimates: 1 Start-
ing with flow sizes and their associated slowdown estimates, 2 m3
transforms the FCT slowdowns into 𝑛 + 1 structured feature maps
(𝑀𝐹

𝑠,𝑝 ; {𝑀𝐵𝑙1
𝑠,𝑝 , . . . , 𝑀

𝐵𝑙𝑛

𝑠,𝑝 }), corresponding to both foreground and
background traffic along the 𝑛-hop path. 3 The feature map𝑀𝐹

𝑠,𝑝

is then flattened to serve as a feature for foreground flows 𝐹 . 4 m3
feeds the sequence of 𝑛 background feature maps {𝑀𝐵𝑙1

𝑠,𝑝 , . . . , 𝑀
𝐵𝑙𝑛

𝑠,𝑝 }
into a generic sequence model (small Llama-2 [50]) to generate a
fixed-length vector that we call background context. The only rea-
son we use a transformer is its ability to process a variable number
of inputs (one feature map per hop, representing the competing
background traffic). We did not try other sequence model archi-
tectures or tune hyper-parameters, although they could improve
our results. 5 An additional input to the model is the foreground
path specification, such as the bandwidth-delay product (BDP) ,
congestion control protocol used (e.g., DCTCP [2], TIMELY [36],
DCQCN [56]), and parameters for those protocols. We show that
m3 generalizes across the space of those parameters.

6 The combined foreground feature, background context, and
network specifications are then fed into a two-layer multilayer
perceptron (MLP) model to predict the final slowdown distribution
of foreground flows for this path. 7 Responding to user-defined
queries, m3 generates the foreground FCT slowdown at specific
percentiles for designated flow size buckets. For example, the default

Per-size
Empirical CDF

Weighted Combining
across Size Buckets

CDF of
Network-wide

FCT Slowdown

Per-size Uniform
Aggregation

K paths

Figure 8: Aggregating FCT slowdown at different size buckets from
𝑘 path-level simulations into an empirical CDF for network-wide
FCT slowdown analysis.

output has four size buckets for (0, 1KB], (1KB, 10KB], (10KB, 50KB],
(50KB, ∞). Each bucket has the corrected FCT slowdown at 100
fixed percentiles, spanning from 1% to 100% in 1% increments. 8 In
training, m3 optimizes its transformer and DNN using L1 loss for all
100 fixed percentiles to align it with the user-provided ground truth,
such as FCT slowdown data from ns-3. In future work, we hope
to test the model’s ability in learning the slowdown distribution
of real networks with different configurations and live application
demand.

Our results suggest these features sufficiently capture network’s
dynamics for effective prediction of foreground FCT slowdown
distribution for various flow sizes. Figure 6 compares the corrected
FCT slowdowns at specific percentiles (represented by blue dots)
against the original estimates of flowSim (represented by green
stars) for a 4-hop path topology and Meta’s workloads (details in
§5.1). m3 is able to accurately adjust flowSim’s FCT slowdowns
across various flow size buckets, even for tail slowdowns of short
flows.

3.5 Estimating Network-Wide Slowdown
Carrying out the above for𝑘 sampled paths results in𝑘 size-bucketed
FCT slowdown distributions as shown in Figure 8. What remains
is to combine the 𝑘 path-level results into a network-wide set of
size-bucketed distributions, and then, optionally, to further com-
bine the distributions in each bucket into a single FCT slowdown
distribution.

Figure 8 illustrates how this is done. First, recall from §3.2 that
the 𝑘 paths already constitute a flow-count-weighted random sam-
ple of the entire network. Therefore, to combine them into a single
set of buckets in a manner that respects workload volume, we only
need to aggregate them uniformly. Second, m3 combines the distri-
butions from each bucket into a single distribution via probabilistic
sampling, where the probability of sampling a particular bucket is
proportional to the number of flows in that bucket. Because perfor-
mance on each path is different, some paths may contribute more
(or less) than their share to the aggregate tail latency at a given
percentile. Thus, averaging the buckets at a given percentile across
all paths will not produce accurate statistics for the network-wide
performance at that same percentile.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

 flowSim
Synthetic Path

Synthetic workload

Groundtruth Slowdown

ML
Correction

Estimated Slowdown

ML Model Training in Python

Path Sim
generation

Network Topology

Traffic workloads
ML

Correction Slowdown

End-to-end Inference in Rust

 flowSim

Model Checkpoints

Query Network-wide Metrics Aggregate Path-level Sim

Path-level Sim in C

?

?
?

?

Figure 9: m3’s implementation

3.6 What m3 does and what it does not
m3 predicts FCT slowdown distributions for individual paths, mak-
ing its predictions topology-agnostic. This also enables sampling
from specific paths of interest. However, m3 assumes static routes
known in advance, associating each link with the traversing flows.
This assumption breaks in the case of dynamic routing strategies
like packet-spraying [9] or flowlets [1]. Furthermore, m3 abstracts
detailed per-flow information by converting complex workloads
into a compact feature map through flowSim and predicts the dis-
tribution of FCT slowdown, not the performance of specific flows.
Moreover, m3 encodes the CC algorithms as a one-hot vector in
its features fed into the MLP model. Hence, it cannot predict the
performance of new CC protocols not seen during training. m3’s
current implementation also does not model the effects of priority
classes; we leave this for future work.

In addition to the FCT slowdown distribution, m3’s output cap-
tures the network’s throughput and latency performance. For ex-
ample, the distribution of FCT slowdown for short flows indicates
packet latency and queueing delay, and the FCT of medium to long
flows captures throughput effects. However, we note that our eval-
uation is based on FCT slowdown distribution; we leave for future
work on how to adapt m3 to predict other metrics such as packet
loss rates.

4 IMPLEMENTATION
Figure 9 depicts m3’s main components:
• MLModel Training (1): m3 uses the PyTorch Lightning frame-
work for distributed training to speed up the training processing.
We train the transformer and the MLP from scratch. Our train-
ing runs for 400 epochs on four A100 GPUs with four workers
launched on each. Each worker processes batches of 20 data sam-
ples. The entire training process is completed in two days, with
each epoch taking roughly 7 minutes. 4 m3’s model checkpoints
include a 66.5MB transformer and a 4.9MB MLP.
• End-to-End Inference (2): m3’s inference pipeline is written
in 4300 lines of Rust and C. The Rust component exposes the
top-level interface and implements path decomposition, parallel
execution, and aggregation. 3 Path level computations including
flowSim, feature map extraction, and ML inference are written
in C. Inference code runs on CPU and is optimized for speed,
facilitating interactive network performance querying and design
exploration. We used a single machine with dual AMD EPYC

Parameter Sample space
#Foreground flows 20000
Flow size distribution Pareto, Exp, Gaussian, Log-normal
Size parameter (𝜃) 5k (small) to 50k (large), continuous
Burstiness parameter (𝜎) 1 (low) to 2 (high), continuous
Max load 20% to 80%, continuous
Path length 2 hops, 4 hops, 6 hops
Network configuration See Table 4

Table 2: Training Set Parameters

Parameter Sample space
#Flows 10M
Oversubscription 1-to-1, 2-to-1, 4-to-1
Traffic matrix A, B, C (See Figure 18(a))
Flow size distribution CacheFollower, WebServer, Hadoop
Burstiness Low (𝜎 = 1), High (𝜎 = 2)
Max load 26% to 83% (continuous range)
Fat-tree topology Small (256-host), Large (6144-host)
Network configuration See Table 4

Table 3: Test Set Parameters

Parameter Sample space
Init window 5 to 30KB, continuous
Buffer size 200 to 500KB, continuous
PFC Flag 0 (disabled), 1 (enabled)
CC protocol DCTCP, TIMELY, DCQCN, HPCC
DCTCP (𝐾) 5 to 20KB, continuous
DCQCN (𝐾𝑚𝑖𝑛 , 𝐾𝑚𝑎𝑥) (20 to 50KB, 50 to 100KB)
HPCC (𝜂, 𝑅𝑎𝑡𝑒𝐴𝐼) (0.70 to 0.95, 500 to 1000 Mbps)
TIMELY (𝑇𝑙𝑜𝑤 , 𝑇ℎ𝑖𝑔ℎ) (40 to 60𝜇s, 100 to 150𝜇s)

Table 4: Network Configuration Parameters

7763 64-core processors (256 CPUs and 512GB RAM in total) for
inference in all our experiments.

5 EVALUATION
We evaluate m3 using three criteria:
• Generalization across workloads and topologies (§5.2)
• Scalability for large-scale network topologies (§5.3)
• Counterfactual search for network parameter exploration (§5.4)
Further experiments (§5.5) demonstrate sources of error, and ablate
the impact of design choices.

5.1 Setup
Training Dataset. We train m3 on a synthetic dataset of 120,000
parking lot topology (single path) ns-3 simulations. To generate this
dataset, we select 2000 workload parameters randomly from Table 2.
For each workload, we pick 20 random network configurations from
Table 4, and use all the 3 path lengths in Table 2. We leave out 10%
of the data points randomly for validation. Generated flows are
divided uniformly at random among all source-destination pairs.
We train m3 once and show its performance in §5.2, §5.3, and §5.4.

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

ML model. m3 uses a tiny [14] version of Llama-2 [50] to process
flowSim feature maps for background flows and generate context
features. This sequence model has 4 layers and 4 attention heads
with an embedding size of 576 and a block size of 16, resulting in
approximately 16.8 million parameters. Its output is a vector with
576 elements. m3 also uses a two-layer MLP with a hidden size of
512 to predict the slowdown distribution given foreground features,
background context, and the network configuration of interest.

To generate flowSim feature maps, we partition flow sizes into 10
consecutive size buckets, ranging from less than 250 bytes to over
50KB. For flows in every size bucket, we extract slowdowns from
flowSim and convert it to a 100-dimensional vector of percentiles
from 1% to 100%, in 1% steps. We further stack vectors for all size
buckets. This creates a feature map with a dimensionality of 10 ×
100, offering a detailed and extensive view of flowSim’s slowdown
profile. m3 outputs the same percentile range for four flow size
buckets, from less than 1KB to over 50KB. The output is a vector
with 400 elements.
Real-world Test Set. We use Meta’s traffic matrices [48], cover-
ing diverse clusters like databases (CacheFollower), web servers
(WebServer), and Hadoop. Traffic within these matrices is rack-to-
rack, with random intra-rack host selection. Flow size distributions
come from the same study (Figure 18(b)). For inter-arrival times,
we use log-normal distribution with two burstiness levels. For low
burstiness, we select log-normal shape parameter 𝜎 = 1, and for
high burstiness, we choose 𝜎 = 2. Load level is picked randomly
such that no link exceeds its capacity. Tables 3 and 4 summarize
the test set.
Network Topology. We evaluate m3’s performance using two
different fat-tree network topologies. We use a large-scale 384-rack,
6144-host fat-tree topology to evaluate m3’s scalability in §5.3. This
topology is based on Meta’s data center fabric design [48], featuring
layers of switches with hosts linked via 10 Gbps connections to
top-of-rack (ToR) switches and higher-tier connections at 40 Gbps.
Due to the high computational complexity of running ns-3 for
gathering ground-truth data in this large setup, we scale down
the topology and workload to fit a 32-rack, 256-host topology for
extensive experiments in §5.2 and §5.4.
Baseline and Performance Metrics. We compare m3’s perfor-
mance with Parsimon [55], a state-of-the-art fast simulator, using
the ns-3 simulator as ground truth. The primary performancemetric
is relative p99 slowdown estimation error defined as follows:

estimated slowdown − ground-truth slowdown
ground-truth slowdown

(4)

We drop the sign and use the magnitude when reporting median or
average. We also record the wall clock running time of each scheme
for a speed comparison.

5.2 Sensitivity Analysis
Setting. To assess m3’s adaptability to workloads and topologies,
we use the small-scale topology described in §5.1. It consists of
two pods with 16 racks each and eight hosts per rack, with vari-
able spine counts to reflect different oversubscription levels. We
randomly sample 192 scenarios that use DCTCP3 from Table 3 to
3Parsimon’s fast implementation in Rust only supports DCTCP.

0 20 40 60 80 100 120 140
Magnitude of relative

p99 slowdown error (%)

0
20
40
60
80

100

CD
F

(%
)

(a) p99 slowdown error distribution

30 40 50 60 70
Max Load (%)

0
10
20
30
40
50
60

M
ed

ia
n

m
ag

ni
tu

de
 o

f r
el

at
iv

e
p9

9
slo

wd
ow

n
er

ro
r (

%
)

(b) m3 is robust to load variation

102 103 104 105

Wall clock running time (s)

0
20
40
60
80

100

CD
F

(%
)

m3
Parsimon
ns-3

(c) Running time distribution

CacheFollower Hadoop WebServer
Flow size distribution

50
100
150
200
250
300
350

M
ed

ia
n

wa
ll

clo
ck

ru
nn

in
g

tim
e

(s
)

m3
Parsimon

(d) Speed vs. workload

Figure 10: m3 is faster, more accurate, and robust than Parsimon.
Shaded areas represent confidence intervals for the median.

A B C
Traffic Matrix

0

50

100

150

CacheFollowerWebServer Hadoop

Flow size distribution

1-to-1 2-to-1 4-to-1
Oversubscription

0

50

100

150

1.0 2.0
Burstiness (log-normal's)

M
ag

ni
tu

de
 o

f r
el

at
iv

e
p9

9
slo

wd
ow

n
er

ro
r (

%
)

m3 Parsimon

Figure 11: Sensitivity of p99 slowdown error distribution to work-
load parameters. Each boxplot depicts the distribution of relative p99
slowdown error for a configuration, with the center box capturing
the middle 50% (between the 25th and 75th percentiles) and a center
line marking the median. Whiskers extend outwards to encompass
the remaining data.

create our test set. We show the impact of different protocols and
their parameters in §5.4.
Accuracy and Workload Robustness. Figure 10(a) shows the
distribution of p99 FCT slowdown estimation errors across the
test set for m3 and Parsimon. m3 achieves average relative p99
slowdown error of 9.9%, outperforming Parsimon’s 18.3%. Notably,
m3 maintained superior performance at the tail with a maximum
p99 error of 33.2%, compared to Parsimon’s 146%. Figure 10(b)
illustrates the median of error in estimating p99 slowdown for
differentmaximum link load buckets.While Parsimon’s error and its
variance increase at loads above 50%, m3’s accuracy remains stable,
exhibiting a consistent median error of about 8% throughout the

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

Init. Window Methods p99 Error Time Speedup

10KB
ns-3 2.05 - 13.5h -

Parsimon 4.29 +109% 1m29s 546×
m3 2.10 +2.44% 37s 1314×

18KB
ns-3 2.44 - 11.9h -

Parsimon 2.73 +11.9% 1m24s 510×
m3 2.30 -5.74% 40s 1071×

Table 5: Comparison of m3, Parsimon, and ns-3 in terms of p99 FCT
slowdown and runtime in large-scale simulations.

load spectrum. Error variance for m3 increases modestly for loads
above 50%, but less than Parsimon. Further analysis in Figure 11
depicts m3’s robustness against variations in trafficmatrix, flow size
distribution, oversubscription, and burstiness. m3 suffers slightly
for traffic matrix C since it has the most skewed traffic, resulting
in many paths with less than 10 flows deviating from our training
distribution. In contrast, Parsimon exhibits a more pronounced and
skewed estimation error pattern when dealing with traffic matrix A,
the flow size distribution of WebServer, an oversubscription ratio
of 4-to-1, and burstier workloads (𝜎 = 2.0).
Runtime. The wall clock time for running simulations is demon-
strated in Figure 10(c). Despite its better accuracy, m3 is 4-8× faster
in end-to-end runtime compared to Parsimon on the same topology
and workload. m3 has an average runtime of 36.4 seconds, while
Parsimon and ns-3 take 3 minutes 27 seconds and nearly 40.5 hours
on average, respectively. Figure 10(d) further indicates that flow
size distribution does not affect m3’s runtime, as its execution time
depends only on the number of flows. However, the runtime of a
discrete-event packet-level simulator like Parsimon depends on the
number of packet-level events and therefore is affected by the flow
size distribution. In other words, Parsimon is relatively slower for
workloads with more packets per flow.

5.3 Scalability to Large Topologies and High
Loads

Setup. To evaluate m3’s scalability, we use the large-scale topology
with 384 racks and 6,144 hosts [48] described in §5.1. We use traffic
matrix B and a 2-to-1 oversubscription ratio in the core network.
The network manages 11.4 million flows, achieving a maximum
link load of 50%. We use the WebServer workload and set the traffic
burstiness to a high level (𝜎 = 2). The maximum Bandwidth-Delay
Product (BDP) is 15KB. We use two different initial congestion
window sizes, 10KB (smaller than maximum BDP) and 18KB (larger
than maximum BDP).
Quantitative Results: Table 5 highlights the performance of m3,
Parsimon, and ns-3 in terms of p99 FCT slowdown and simula-
tion running time. Notably, m3 significantly accelerates simulation,
achieves up to 1314× speedup over ns-3, and reduces simulation
time from tens of hours to as low as 37 seconds. Regarding accuracy,
m3 achieves a relative p99 FCT slowdown error of 2.44% for the
10KB initial congestion window size, compared to Parsimon’s 109%
error. In the case of 18KB initial congestion window size, m3 has
an estimation error of -5.74%, while Parsimon’s error is +11.9%.
Comparative Insight: Figure 12 shows the FCT slowdown distri-
butions from m3, Parsimon, and ns-3 under 10KB initial window

2 4 6 8 10
FCT slowdown

80
85
90
95

100

CD
F

(%
) m3

Parsimon
ns-3

(a) flow size ∈ (0, 1KB]

2 4 6 8 10
FCT slowdown

80
85
90
95

100

CD
F

(%
)

(b) flow size ∈ (1KB, 10KB]

2 4 6 8 10
FCT slowdown

80
85
90
95

100

CD
F

(%
)

(c) flow size ∈ (10KB, 50KB]

2 4 6 8 10
FCT slowdown

80
85
90
95

100

CD
F

(%
)

(d) flow size ∈ (50KB,∞)

Figure 12: FCT slowdown estimated by m3, Parsimon, and ns-3 in a
large-scale network simulation with 50% max link load and 10KB
initial window. The horizontal dashed line shows the 99th percentile.

size. m3’s estimation is close to ns-3 across different flow size buck-
ets, especially for the tail. In contrast, Parsimon overestimates the
FCT slowdown for large flows, resulting in a p99 FCT slowdown of
4.29, twice as large as ns-3’s 2.05 (Table 5). Parsimon decomposes
the network simulation into independent link-level simulations and
aggregates the link-level results along a path. For the smaller 10KB
initial window size, the initial window size becomes a bottleneck
for flows larger than 10KB in each link-level simulation. Parsimon
adds the slowdowns incurred in the link-level simulations, and thus
it over-counts the effect of the window size on the delay. Essentially,
Parsimon assumes that the slowdown in every link-level simulation
is due to congestion at that link. But when the bottleneck is the
transport itself (e.g., a small initial window), summing the slow-
downs for links along a path is incorrect. In contrast, m3 learns the
effect of the initial window size correctly from the ground-truth
path-level simulation data.

5.4 Counterfactual Search for Design
Exploration

As a case study to demonstrate m3’s utility for quickly explor-
ing the space of network design parameters via counterfactual
search, we evaluate m3’s ability in predicting the impact of chang-
ing HPCC [28]’s initial congestion window size and 𝜂 (parameter
controlling the tradeoff between utilization and transient queue
length) on p99 FCT slowdown for different flow classes. We use the
32-rack, 256-host small network topology for this experiment. Flow
size distribution is WebServer, traffic matrix is C, max link load is
50%, PFC is enabled, and buffer size is 400KB.

First, we fix 𝜂 to 90% and sweep the range of initial congestion
window sizes in Figure 13. As the figure shows, m3’s p99 slowdown
predictions are close to ns-3, and capture the trends. For example,
it correctly predicts that increasing the congestion initial window
size hurts the performance of small flows. Notably, m3 takes only
25.2 seconds to explore the effect of window size, whereas the same
experiment takes 8 hours with ns-3. As a result, m3 enables live
configuration exploration, opening new avenues for tuning data
center network parameters in response to changes in workloads (a
topic we leave to future work). Next, we fix the initial congestion
window size to 20KB, and sweep 𝜂 in Figure 14. Again, m3 is able

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

10 20 30
Initial congestion window size (KB)

(a) flow size (0, 1KB)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

10 20 30
Initial congestion window size (KB)

(b) flow size [1KB,10KB)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

10 20 30
Initial congestion window size (KB)

(c) flow size [10KB,50KB)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

10 20 30
Initial congestion window size (KB)

(d) flow size [50KB,)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

m3 ns-3

Figure 13: m3 accurately predicts the effect of changing the initial congestion window size on p99 FCT slowdown for different classes of flows,
much faster (1139×) than ns-3.

70 80 90
HPCC- (%)

(a) flow size (0, 1KB)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

70 80 90
HPCC- (%)

(b) flow size [1KB,10KB)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

70 80 90
HPCC- (%)

(c) flow size [10KB,50KB)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

70 80 90
HPCC- (%)

(d) flow size [50KB,)

2.5

5.0

7.5

p9
9

FC
T

Sl
ow

do
wn

m3 ns-3

Figure 14: m3 accurately predicts the effect of changing CC parameters (HPCC’s 𝜂) on p99 FCT slowdown for different classes of flows, much
faster (763×) than ns-3.

to correctly capture the effect of 𝜂 on p99 FCT slowdown, while
having an average speedup of 763× compared to ns-3.

5.5 Ablation Study
Here, we ablate m3’s design choices. m3’s sources of estimation
errors are twofold: First, it decomposes full networks into indepen-
dent path-level simulations, ignoring the effect of any traffic not
intersecting the path. Second, it approximates the path-level simu-
lation with flowSim and machine learning. To measure the effect
of ignoring traffic that does not intersect a path, we use ns-3-path
defined in §2. It shows what the error is if the simulator is perfect
(ns-3), but we ignore the effect of traffic not intersecting paths on its
foreground flows. We estimate the slowdown of paths’ foreground
flows in the small-scale 32-rack, 256-host fat-tree topology with
ns-3-path, m3, and Parsimon. Figure 15 shows that the assumption
we made (ignoring traffic that does not intersect a path) accounts
for less than half of m3’s error, and more than half of the error is
coming from approximation with machine learning. Furthermore,
Parsimon’s assumption of link independence is strictly worse than
m3’s assumption across all flow size buckets and path lengths.

We further evaluate the necessity of m3’s components (includ-
ing background contexts as input to the model, and using an ML
model) for estimating the FCT slowdown of our building block, a
parking-lot topology (a single path). If we don’t use an ML model,
we are left with the outputs of flowSim. If we do use the ML model
but do not include context features from background flows in its
input, we have a crippled version of the model that we call m3
without context. Figure 16 displays the distribution of the p99 FCT
slowdown for flowSim, m3 w/o context, and the full implementa-
tion of m3 for synthetic workloads described in Table 2. flowSim
underestimates slowdowns in general, particularly for smaller flows

(0, 1) [1, 10) [10, 50)[50,)
Flow size range (KB)

0
10
20
30
40
50
60
70
80

M
ag

ni
tu

de
 o

f r
el

at
iv

e
p9

9
slo

wd
ow

n
er

ro
r(%

)

2 4 6
Path length (#hops)

0

20

40

60

80

100

M
ag

ni
tu

de
 o

f r
el

at
iv

e
p9

9
slo

wd
ow

n
er

ro
r(%

) ns-3-path
m3
Parsimon

Figure 15: Error breakdown for paths’ foreground flows in the
small-scale 32-rack 256-host fat-tree topology.

(0, 1) [1, 10) [10, 50)[50,)
Flow size range (KB)

100
75
50
25

0
25
50
75

100

re
la

tiv
e

p9
9

slo
wd

ow
n

er
ro

r(%
)

flowSim
m3 w/o context
m3

2 4 6
Path length (#hops)

100

50

0

50

100

re
la

tiv
e

p9
9

slo
wd

ow
n

er
ro

r(%
)

Figure 16: m3 components (machine learning model and back-
ground features) are both necessary for its path-level accuracy.

and on longer paths, resulting in errors as large as -80%. m3 corrects
flowSim’s estimation. Using context features improves m3’s accu-
racy by about 33% on average, and significantly decreases variance.
The observation is consistent across varying path lengths and flow
sizes.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

6 RELATEDWORK
We organize the large literature on performance modeling for com-
puter networks into three groups: (i) queueing theory (§6.1), (ii)
flow-level methods (§6.2), and (iii) packet-level methods (§6.3). Like
m3, various researchers have leveraged machine learning methods
to compensate for some of the limitations of each approach; we
discuss those in each section.

6.1 Queueing Theory
Queueing theory models networks as system of queues with arrival
and service time processes [8, 47]. Closed-form results are possible
under certain assumptions, such as Poisson processes with single
packet flows. These assumptions are generally too simplistic for
networks with endpoint congestion control, bursty arrivals, and
arbitrary flow sizes. MQL [39, 40] uses per queue-type regression
trees to learn to correct for systematic bias in latency estimates
from queueing theory, for all queues that a packet traverses. Al-
though correcting for systematic bias has similarities to our work-
load featurization technique, MQL is inherently less expressive
since it assumes single packet flows and uses as inputs the average
flow arrival rate and coefficient of variation. These are sufficient
in the case of generalized exponential processes, but not for more
general networks. More expressive models like Markovian arrival
process [4, 10] can produce accurate estimates; however, this re-
sults in a huge state space that is computationally complex and
scales poorly. Nevertheless, they have use-cases in performance
modeling [21, 25, 26, 31, 34, 42, 44].

6.2 Flow-level granularity
Network Calculus [11, 27] models worst-case metric bounds using
min-plus and max-plus algebras. However, it cannot estimate the
mean or any percentile. As we have seen, max-min flow approx-
imations like flowSim can accurately model the performance of
long flows, but fall short when asked to estimate the performance
of short and medium-size flows where queue dynamics dominate.
Fluid-based approaches [2, 6, 32, 35, 43] can correct for this by
modeling the evolution of flows using partial differential equa-
tions (PDEs). However, they require a high level of expertise to
define PDEs describing system dynamics for every new system, and
can only model the average behavior of a stochastic system [13].
The Routenet line of work [15, 16, 49] uses graph neural networks
with flow-level inputs to predict performance metrics. However,
their flow-level features, e.g., mean rate or pre-defined parameters
for simple processes, are not expressive enough to capture com-
plex workloads. Furthermore, they have challenges in generalizing
across topologies, link capacities, and path lengths [12, 20]. As
with MQL, QT-Routenet [12] uses predictions of queuing theory
techniques assuming Poisson arrivals as inputs to the graph neural
network, and has many of the same limitations.

6.3 Packet-level granularity
The most popular tools for estimating network performance model
the network behavior down to the granularity of individual packet
arrivals and departures from every switch. Examples include ns-
3 [46], OPNET [30], and OMNET++ [51]. Although widely used by

practitioners and researchers, their main issue is performance for
networks of data center scale.

It has been difficult to get significant speedup [23, 29, 41] using
standard parallelization techniques [17, 18], leading to slower per-
formance than single-threaded simulation in some cases [46, 54]. Re-
cently, DONS [19] and Parsimon [55] showed significant speedups
for packet-level simulation. DONS uses a data-oriented design to
improve multi-core, cache, and memory efficiency of precise packet-
level simulation, achieving a speedup of 65× on a cluster of CPU-
based servers. m3, on the other hand, does approximate flow-level
performance prediction and achieves a speedup of about 1300×.
Parsimon assumes that simultaneous congestion events at multiple
bottleneck links are second-order effects. This assumption enables
reasoning about links independently, leading to speedup gains, as
we have seen at some cost in accuracy.

Inspired by a workshop paper [24], a line of research uses ma-
chine learning to speed up packet-level simulation. Mimicnet [54]
uses a traditional packet-level simulation of a cluster in a data center
to learn the behavior of a cluster of machines; exploiting symme-
tries in FatTree topology [3] with uniform traffic among equal-sized
clusters of machines, it composes “mimics” to model the behavior
of the network. DeepQueueNet [53] uses packet-level simulation
to train a model of the packet-level behavior of every network
component, that is, every link and switch, using RNNsearch [7]. It
achieves a speedup of about 70× using four V100 GPUs, compared
to traditional packet-level simulation. However, m3 trains a model
of path behavior that runs on CPUs for inference and achieves a
speedup of about 1300×.

7 CONCLUSION
We presented m3, a fast and accurate model for estimating aggre-
gate flow-level statistics for data center networks under different
workloads and configuration choices. The model is novel in several
aspects. First, it is path-based, in that it approximates aggregate
network-wide performance by considering only the traffic that in-
tersects with a given path. Second, it uses a max-min flow-level
simulator to quickly summarize and featurize the broad space of
possible workload characteristics that can affect path-level perfor-
mance. Feature maps for the foreground and background traffic
are combined with topology and configuration options such as the
choice of TCP congestion control protocol, protocol parameters
such as initial window size, and link capacity and latency. These
inputs are then used to train the model on synthetically generated
input workloads, and tested against more realistic workloads taken
from industry standard benchmarks. Our experiments show that
m3 outperforms prior estimation approaches in execution speed,
prediction accuracy, and generalization capabilities.

ACKNOWLEDGEMENT
We thank our shepherd Kai Chen and anonymous reviewers whose
comments helped improve the paper. We also thank Myungjin Lee
and Ratul Mahajan for their comments on an early draft of this
paper. This work was supported by NSF Career Award #1751009,
DARPA FastNICs program under contract #HR0011-20-C-0089, and
grants from Cisco Research and the UW Center for the Future of
Cloud Infrastructure.

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed
congestion-aware load balancing for datacenters. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM). 503–514.

[2] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011. Analysis of
DCTCP: stability, convergence, and fairness. In Proceedings of the ACM SIGMET-
RICS Joint International Conference on Measurement and Modeling of Computer
Systems. 73–84.

[3] Marina Alonso, Salvador Coll, Juan-Miguel Martínez, Vicente Santonja, and
Pedro López. 2015. Power consumption management in fat-tree interconnection
networks. Parallel computing 48 (2015), 59–80.

[4] Søren Asmussen and Ger Koole. 1993. Marked point processes as limits of
Markovian arrival streams. Journal of Applied Probability 30, 2 (1993), 365–372.

[5] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the com-
plexity of traffic traces and implications. Proceedings of the ACM on Measurement
and Analysis of Computing Systems (2020), 47–48.

[6] François Baccelli andDohyHong. 2003. Flow level simulation of large IP networks.
In Proceedings of the IEEE Conference on Computer Communications (INFOCOM).
1911–1921.

[7] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate. In Proceedings of the
International Conference on Learning Representations (ICLR).

[8] Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S Trivedi. 2006.
Queueing networks and Markov chains: modeling and performance evaluation
with computer science applications. John Wiley & Sons, Ltd. 821–868 pages.
https://doi.org/10.1002/0471791571.biblio

[9] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu, Lihua Yuan,
Yixin Zheng, HaitaoWu, Yongqiang Xiong, and DaveMaltz. 2013. Per-packet load-
balanced, low-latency routing for clos-based data center networks. In Proceedings
of the ACM Conference on Emerging Networking Experiments and Technologies.
49–60.

[10] Srinivas R. Chakravarthy. 2011. Markovian Arrival Processes. John Wiley & Sons,
Ltd. https://doi.org/10.1002/9780470400531.eorms0499

[11] Florin Ciucu and Jens Schmitt. 2012. Perspectives on network calculus: no free
lunch, but still good value. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM). 311–322.

[12] Bruno Klaus de Aquino Afonso and Lilian Berton. 2022. QT-Routenet: Improved
GNN generalization to larger 5G networks by fine-tuning predictions from queue-
ing theory. ITU Journal on Future and Evolving Technologies 3, 2 (2022), 134–141.
https://doi.org/10.52953/fbrb3688

[13] Do Young Eun. 2005. On the limitation of fluid-based approach for Internet
congestion control. In Proceedings of the International Conference On Computer
Communications and Networks, ICCCN. 463–468.

[14] Facebookresearch. Retrieved by Feb 1st 2024. Inference code for LLaMA models.
In https://github.com/facebookresearch/ llama/blob/main/ llama/model.py.

[15] Miquel Ferriol-Galmés, Jordi Paillisse, José Suárez-Varela, Krzysztof Rusek, Shi-
han Xiao, Xiang Shi, Xiangle Cheng, Pere Barlet-Ros, and Albert Cabellos-
Aparicio. 2023. RouteNet-Fermi: NetworkModelingWith GraphNeural Networks.
IEEE/ACM Transactions on Networking 31, 6 (2023), 3080–3095.

[16] Miquel Ferriol-Galmés, Krzysztof Rusek, José Suárez-Varela, Shihan Xiao, Xiang
Shi, Xiangle Cheng, Bo Wu, Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2022.
RouteNet-Erlang: A Graph Neural Network for Network Performance Evaluation.
In Proceedings of the IEEE Conference on Computer Communications (INFOCOM).
2018–2027.

[17] Richard M Fujimoto. 1990. Parallel discrete event simulation. Commun. ACM 33,
10 (1990), 30–53.

[18] Richard M Fujimoto. 2001. Parallel and distributed simulation systems. In Pro-
ceeding of the Winter Simulation Conference. 147–157 vol.1.

[19] Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Xizheng Wang, Ran Zhang, and Lu
Lu. 2023. DONS: Fast and Affordable Discrete Event Network Simulation with
Automatic Parallelization. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM). 167–181.

[20] Martin Happ, Jia Lei Du, Matthias Herlich, Christian Maier, Peter Dorfinger, and
José Suárez-Varela. 2022. Exploring the Limitations of Current Graph Neural Net-
works for Network Modeling. In Proceedings of the IEEE/IFIP Network Operations
and Management Symposium. 1–8.

[21] Gábor Horváth, B Van Houdt, and M Telek. 2014. Commuting matrices in the
queue length and sojourn time analysis of MAP/MAP/1 queues. Stochastic Models
30, 4 (2014), 554–575.

[22] Broadcom Inc. Retrieved by Feb 1st 2024. htsim Network Simulator. In https:
//github.com/Broadcom/csg-htsim.

[23] Shafagh Jafer, Qi Liu, and Gabriel Wainer. 2013. Synchronization methods in
parallel and distributed discrete-event simulation. Simulation Modelling Practice
and Theory 30 (2013), 54–73. https://doi.org/10.1016/j.simpat.2012.08.003

[24] Charles W. Kazer, Jo ao Sedoc, Kelvin K.W. Ng, Vincent Liu, and Lyle H. Ungar.
2018. Fast Network Simulation Through Approximation or: How Blind Men
Can Describe Elephants. In Proceedings of the ACM Workshop on Hot Topics in
Networks. 141–147.

[25] Abbas Eslami Kiasari, Zhonghai Lu, andAxel Jantsch. 2013. AnAnalytical Latency
Model for Networks-on-Chip. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 21, 1 (2013), 113–123. https://doi.org/10.1109/TVLSI.2011.2178620

[26] Alexander Klemm, Christoph Lindemann, and Marco Lohmann. 2003. Modeling
IP traffic using the batch Markovian arrival process. Performance Evaluation 54,
2 (2003), 149–173. https://doi.org/10.1016/S0166-5316(03)00067-1

[27] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a theory of
deterministic queuing systems for the internet. Springer-Verlag, Berlin, Heidelberg.

[28] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: High Precision Congestion Control. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM). 44–58.

[29] Yu Liu, Boleslaw K. Szymanski, and Adnan Saifee. 2006. Genesis: A scalable
distributed system for large-scale parallel network simulation. Computer Networks
50, 12 (2006), 2028–2053. https://doi.org/10.1016/j.comnet.2005.10.002

[30] Zheng Lu and Hongji Yang. 2012. Unlocking the power of OPNET mod-
eler. Cambridge University Press. 1–238 pages. https://doi.org/10.1017/
CBO9780511667572

[31] Sumit K. Mandal, Raid Ayoub, Micahel Kishinevsky, Mohammad M. Islam, and
Umit Y. Ogras. 2021. Analytical Performance Modeling of NoCs under Priority
Arbitration and Bursty Traffic. IEEE Embedded Systems Letters 13, 3 (2021), 98–101.
https://doi.org/10.1109/LES.2020.3013003

[32] Marco Ajmone Marsan, Michele Garetto, Paolo Giaccone, Emilio Leonardi, Enrico
Schiattarella, and Alessandro Tarello. 2004. Using partial differential equations
to model TCP mice and elephants in large IP networks. In Proceedings of the IEEE
Conference on Computer Communications (INFOCOM). 2821–2832 vol.4.

[33] Laurent Massoulié and James Roberts. 1999. Bandwidth sharing: objectives and
algorithms. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM). 1395–1403 vol.3.

[34] Hiroyuki Masuyama and Tetsuya Takine. 2003. Sojourn time distribution in
a MAP/M/1 processor-sharing queue. Operations Research Letters 31, 5 (2003),
406–412. https://doi.org/10.1016/S0167-6377(03)00028-2

[35] Vishal Misra, Wei-Bo Gong, and Don Towsley. 2000. Fluid-based analysis of a
network of AQM routers supporting TCP flows with an application to RED. In
Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM).
151–160.

[36] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based congestion control for the datacenter. Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM), 537–550.

[37] Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santiago Segarra, Daniel
Crankshaw, Umesh Krishnaswamy, Ramesh Govindan, and Himanshu Raj. 2024.
Solving Max-Min Fair Resource Allocations Quickly on Large Graphs. In Proceed-
ings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 1937–1958.

[38] Shruti Narayana, Emily Shriver, Kenneth O’Neal, Nuriye Yildirim, Khamida Be-
galiyeva, and Umit Ogras. 2023. Similarity-Based Fast Analysis of Data Center Net-
works. IEEE Design & Test PP, 1–1. https://doi.org/10.1109/MDAT.2023.3310450

[39] Shruti Yadav Narayana, Emily Shriver, Kenneth O’Neal, Nuriye Yildirim, Khamida
Begaliyeva, and Umit YOgras. 2023. Similarity-Based Fast Analysis of Data Center
Networks. IEEE Design & Test (2023).

[40] Shruti Yadav Narayana, Jie Tong, Anish Krishnakumar, Nuriye Yildirim, Emily
Shriver, Mahesh Ketkar, and Umit Y. Ogras. 2023. MQL: ML-Assisted Queuing La-
tency Analysis for Data Center Networks. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 50–60.

[41] David Nicol and Richard Fujimoto. 1994. Parallel simulation today. Annals of
Operations Research 53 (1994), 249–285.

[42] Umit Y. Ogras, Paul Bogdan, and Radu Marculescu. 2010. An Analytical Approach
for Network-on-Chip Performance Analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 29, 12 (2010), 2001–2013. https:
//doi.org/10.1109/TCAD.2010.2061613

[43] Qiuyu Peng, Anwar Walid, Jaehyun Hwang, and Steven H. Low. 2016. Multipath
TCP: Analysis, Design, and Implementation. 24, 1 (2016), 596–609. https:
//doi.org/10.1109/TNET.2014.2379698

[44] Xi Peng, Fan Zhang, Li Chen, and Gong Zhang. 2021. A MAP-based Perfor-
mance Analysis on 5G-powered Cloud VR Streaming. In Proceedings of the IEEE
International Conference on Communications (ICC). 1–6.

[45] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Orn-
stein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong
Zhang, Junlan Zhou, and Amin Vahdat. 2022. Jupiter Evolving: Transforming
Google’s Datacenter Network via Optical Circuit Switches and Software-Defined

https://doi.org/10.1002/0471791571.biblio
https://doi.org/10.1002/9780470400531.eorms0499
https://doi.org/10.52953/fbrb3688
https://github.com/facebookresearch/llama/blob/main/llama/model.py
https://github.com/Broadcom/csg-htsim
https://github.com/Broadcom/csg-htsim
https://doi.org/10.1016/j.simpat.2012.08.003
https://doi.org/10.1109/TVLSI.2011.2178620
https://doi.org/10.1016/S0166-5316(03)00067-1
https://doi.org/10.1016/j.comnet.2005.10.002
https://doi.org/10.1017/CBO9780511667572
https://doi.org/10.1017/CBO9780511667572
https://doi.org/10.1109/LES.2020.3013003
https://doi.org/10.1016/S0167-6377(03)00028-2
https://doi.org/10.1109/MDAT.2023.3310450
https://doi.org/10.1109/TCAD.2010.2061613
https://doi.org/10.1109/TCAD.2010.2061613
https://doi.org/10.1109/TNET.2014.2379698
https://doi.org/10.1109/TNET.2014.2379698

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li, et al.

Networking. In Proceedings of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM). 66–85.

[46] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.
Springer Berlin Heidelberg. 15–34 pages. https://doi.org/10.1007/978-3-642-
12331-3_2

[47] Thomas G. Robertazzi. 2000. Computer Networks and Systems: Queueing Theory
and Performance Evaluation. Springer-Verlag.

[48] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the
ACM Special Interest Group on Data Communication (SIGCOMM). 123–137.

[49] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros, and Al-
bert Cabellos-Aparicio. 2020. RouteNet: Leveraging graph neural networks for
network modeling and optimization in SDN. IEEE Journal on Selected Areas in
Communications 38, 10 (2020), 2260–2270.

[50] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023). https://arxiv.org/abs/2307.09288

[51] Andras Varga. 2019. A Practical Introduction to the OMNeT++ Simulation Frame-
work. Springer International Publishing. 3–51 pages. https://doi.org/10.1007/978-
3-030-12842-5_1

[52] Bob Wheeler. 2019. Tomahawk 4 switch first to 25.6 Tbps. Microprocessor Report
(2019). https://docs.broadcom.com/doc/12398014

[53] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze Zhang, Hong Xu, Baochun
Li, and Gong Zhang. 2022. DeepQueueNet: towards scalable and generalized
network performance estimation with packet-level visibility. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM). 441–457.

[54] Qizhen Zhang, Kelvin K. W. Ng, Charles Kazer, Shen Yan, João Sedoc, and Vincent
Liu. 2021. MimicNet: fast performance estimates for data center networks with
machine learning. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM). 287–304.

[55] Kevin Zhao, Prateesh Goyal, Mohammad Alizadeh, and Thomas E Anderson.
2023. Scalable Tail Latency Estimation for Data Center Networks. In Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 685–702.

[56] Yibo Zhu, Haggai Eran, Daniel Firestone, ChaunXiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In
Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM).
523–536.

https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://arxiv.org/abs/2307.09288
https://doi.org/10.1007/978-3-030-12842-5_1
https://doi.org/10.1007/978-3-030-12842-5_1
https://docs.broadcom.com/doc/12398014

m3: Accurate Flow-Level Performance Estimation using Machine Learning ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0.0 0.1 0.2 0.3 0.4 0.5
p99 FCT slowdown error

0
20
40
60
80

100

CD
F

(%
)

buffer: 200-300KB
buffer: 300-400KB
buffer: 400-500KB

(a) Impact of buffer size

0.0 0.1 0.2 0.3 0.4 0.5
p99 FCT slowdown error

0
20
40
60
80

100

CD
F

(%
)

window: 05-14KB
window: 14-23KB
window: 23-30KB

(b) Impact of init. window size

0.0 0.1 0.2 0.3 0.4 0.5
p99 FCT slowdown error

0
20
40
60
80

100

CD
F

(%
)

DCQCN
DCTCP
HPCC
TIMELY

(c) Impact of CC algorithms

0.0 0.1 0.2 0.3 0.4 0.5
p99 FCT slowdown error

0
20
40
60
80

100
CD

F
(%

)

disable PFC
enable PFC

(d) Impact of triggering PFC

Figure 17: m3’s estimation errors of p99 slowdown across different
sample spaces in Table 4.

Matrix A Matrix B Matrix C

100 104 103 103 105

(a) Traffic matrices (32-rack sample)

100 102 104

Flow size (KB)

0

50

100

CD
F

(%
)

CacheFollower
WebServer
Hadoop

(b) Flow size distributions

Figure 18:Weuse data fromMeta’s data center network [48], includ-
ing (a) the traffic matrices extracted from the accompanying dataset,
and (b) the flow size distributions estimated from the published data
for evaluation.

Appendices are supporting material that has not been peer-
reviewed.

A DETAILS ON FLOWSIM
Algorithm 1 depicts the path-level simulation with a path-level
workload on a parking-lot topology. flowSim begins by initializ-
ing a priority queue 𝑄 with all flows 𝐹 , including their sizes and
arrival times (lines 2). Next, flowSim schedules the flow arrival and
completion events (lines 4-10). For each event, flowSim iteratively
identifies the bottleneck link along with its associated flows (line
14) and assigns the max-min rate to each associated flow by con-
sidering the capacity of its bottleneck link (lines 11-17). flowSim
ends when all flows are completed. flowSim processes even a 6-hop
parking-lot topology with 1 million flows in just a few seconds.

Algorithm 1: flowSim’s FCT estimation based on flow
event scheduling and max-min fair sharing.
Input: Set of 𝑛 flows 𝐹 , Set of 𝑘 links 𝐿 with initial

capacities 𝐶
Output: Flow Completion Times (FCT) for flows in 𝐹

1 Function getFctFlowsim(𝐹 , 𝐿, 𝐶)
⊲ Dynamic flow event scheduling

2 𝑄 ← PriorityQueue(𝐹) // Initialize an event queue with

flow sizes and arrival times

3 𝐹 ∗ ← ∅ // Set of active flows

4 while !𝑄.isEmpty() do
5 (𝑓 , 𝑡, EventType) ← 𝑄.pop()
6 if EventType is Arrival then
7 𝐹 ∗ .add(𝑓) // Add a new flow

8 else
9 𝐹 ∗ .remove(𝑓) // Remove a completed flow

10 addFCT(𝑓 , 𝑡)
⊲ Iterative max-min fair rate allocation

11 𝑅∗ ← ∅ // Flow rates of active flows in 𝐹 ∗

12 𝐶∗ ← 𝐶 // Initialize link capacities

13 while 𝑙𝑒𝑛(𝑅∗) ≠ 𝑙𝑒𝑛(𝐹 ∗) do
14 (𝑟, 𝑙) ← getBottleneckLinkRate(𝐹 ∗, 𝐿,𝐶∗)

foreach 𝑓 ∈ getFlowsOnLink(𝐹 ∗, 𝑙) do
15 if 𝑓 ∉ 𝑅∗ then
16 𝑅∗ [𝑓] ← 𝑟 // get its max-min fair rate

17 𝐶∗ ← UpdateCapacities(𝐶∗, 𝐹 ∗, 𝑅∗)
18 𝑄 ← UpdatePriorityQueue(𝑄, 𝐹 ∗, 𝑅∗)

19 return getFCT()

B M3’S ESTIMATION ERROR FOR
COUNTERFACTUAL SEARCH

Figure 17 demonstrates m3’s p99 slowdown estimation error across
different sample spaces in Table 4.

	Abstract
	1 Introduction
	2 Insights
	2.1 Path-level Decomposition
	2.2 Workload Featurization

	3 System Architecture of m3
	3.1 High-Level Overview
	3.2 Generating Path-Level Simulations
	3.3 Quick Estimation via flowSim
	3.4 Improving Estimates with Machine Learning
	3.5 Estimating Network-Wide Slowdown
	3.6 What m3 does and what it does not

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Sensitivity Analysis
	5.3 Scalability to Large Topologies and High Loads
	5.4 Counterfactual Search for Design Exploration
	5.5 Ablation Study

	6 Related Work
	6.1 Queueing Theory
	6.2 Flow-level granularity
	6.3 Packet-level granularity

	7 Conclusion
	References
	A Details on flowSim
	B m3's estimation error for counterfactual search

