é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

ScaleDB: A Scalable, Asynchronous
In-Memory Database

Syed Akbar Mehdi, The University of Texas at Austin; Deukyeon Hwang
and Simon Peter, University of Washington,; Lorenzo Alvisi, Cornell University

https://www.usenix.org/conference/osdi23/presentation/mehdi

This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems
Design and Implementation.

July 10-12, 2023 « Boston, MA, USA
978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

alllasc Elall aeala

(el
% King Abdullah University of

Science and Technology

ScaleDB: A Scalable, Asynchronous In-Memory Database

Syed Akbar Mehdi

The University of Texas at Austin*

Simon Peter
University of Washington

Abstract

ScaleDB is a serializable in-memory transactional database
that achieves excellent scalability on multi-core machines
by asynchronously updating range indexes. We find that
asynchronous range index updates can significantly improve
database scalability by applying updates in batches, reducing
contention on critical sections. To avoid stale reads, ScaleDB
uses small hash indexlets to hold delayed updates. We use in-
dexlets to design ACC, an asynchronous concurrency control
protocol providing serializability. With ACC, it is possible
to delay range index updates without adverse performance
effects on transaction execution in the common case. ACC
delivers scalable serializable isolation for transactions, with
high throughput and low abort rate. Evaluation on a dual-
socket server with 36 cores shows that ScaleDB achieves 9.5x
better query throughput than Peloton on the YCSB bench-
mark and 1.8% better transaction throughput than Cicada on
the TPC-C benchmark.

1 Introduction

In-memory databases [5, 10, 15, 21, 23, 42] are becoming in-
creasingly popular: they perform well under a wide range
of workloads and support requirements, such as real-time
constraints, that are challenging for their disk-based counter-
parts [16]. They also, however, face scalability demands that
sharding can only partially address: many real-world work-
loads have skewed access distributions [30, 47, 50, 68, 75], and
the frequent hotspots they generate in individual shards re-
quire database solutions that can scale on multi-core servers.

Unfortunately, despite years of research, scaling in-memory
databases on multi-core architectures remains challenging.
Existing work [62, 73, 79] eliminates the bottleneck on a
shared timestamp in the concurrency control protocol. Other
work [37, 38, 60, 63, 77] has focused on improving the scal-
ability of indexing structures in isolation from the database
architecture. Nonetheless, current databases scale poorly on
multi-core architectures (§3.1). In particular, shared range-
index structures (e.g., B* trees) continue to be a main source of
contention [77], and the high cost of updates to these indexes,
even by unrelated transactions, is a major factor limiting scala-
bility [62]. As fast storage via solid-state drives and persistent
memory becomes the norm, contention on these structures
is intensifying.

*Currently at Google. Work done during PhD at UT Austin.

Deukyeon Hwang
University of Washington

Lorenzo Alvisi
Cornell University

We believe that continuing to scale with these application
and hardware trends requires a fresh approach. Our main
observation, supported by recent work in file systems [34, 35],
is that contention on shared data structures is often not funda-
mental, but simply an artifact of a particular system architec-
ture. In particular, we find that contention caused by synchro-
nous updates to sorted range-index structures is unnecessary
in the common case. Our analysis (§3.2) shows that it is pos-
sible to delay many common range-index updates, without
compromising on strong consistency guarantees or latency re-
quirements for transactions. Delayed updates may be batched
to reduce contention on shared range-index structures.

These observations lead us to propose a decoupled database
design, centered around minimizing unnecessary contention
among unrelated transactions. Our main technique is to de-
couple committing a transaction from updating the affected
range indexes: we update range indexes asynchronously, while
using scalable hash-based indexlets to track writes of recently
committed transactions. Based on this asynchronous archi-
tecture, we design asynchronous concurrency control (ACC),
anovel concurrency control protocol that provides serializ-
ability for concurrent transactions without compromising
scalability, commit latency, or throughput. ACC is an opti-
mistic concurrency control protocol that builds on indexlets
to provide phantomlets for scalable phantom! detection [32].
ACC uses locks in indexlets, rather than in range indexes, to
provide scalable atomic transaction commit.

We present ScaleDB, a scalable multi-core in-memory trans-
actional database based on asynchronous concurrency con-
trol. By decoupling transaction execution from range index
updates, ScaleDB can focus on improving the scalability of the
former in isolation from the latter and without undesirable
performance tradeoffs. By avoiding unnecessary contention
on shared data structures in the common case, ScaleDB deliv-
ers scalable serializable isolation for ACID transactions, with
high throughput, low commit latency, and low abort rate.

We make the following contributions:

e An analysis of the range index scalability bottleneck and
of asynchronous range-index updates as a way to alleviate
that bottleneck for unrelated transactions (§3).

! Phantom anomalies arise when insertions or deletions by other concurrently
committing transactions cause two identical range scans in the same
transaction to return a different set of rows.

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 361

e The design (§4) and implementation (§5) of ScaleDB, a scal-
able in-memory database that decouples range index man-
agement from transaction execution to allow asynchronous
update of range indexes in the common case.

e Asynchronous concurrency control (ACC), a novel concur-
rency control protocol that provides serializability in an
asynchronous database (§4.2). ACC uses phantomlets to
scalably detect phantoms in range scans and provides scal-
able locks in indexlets to atomically commit transactions.

e A performance evaluation of ScaleDB on a dual-socket
server with 36 cores, which shows that ScaleDB scales bet-
ter than Cicada and Peloton. At scale, ScaleDB achieves
9.5X better query throughput than Peloton on the YCSB
benchmark and 1.8X better transaction throughput than
Cicada with shared indexes on the TPC-C benchmark.

2 Background

Modern relational databases face challenging scalability de-
mands. In addition to serving as backends for large-scale web
applications [11, 17, 25, 31], they are offered as a service in
public clouds [1, 4, 74], and must support applications that can
be simultaneously write and read intensive; require both low
transaction commit latency and high transactional through-
put; and, increasingly, run analytical queries (on data from
sources such as sensors, real-time analytics, and machine
learning [19, 27]) that require maintaining a large number of
indexes on every write.

In-memory databases are particularly suited to handle
these diverse workload requirements, and their adoption is
further facilitated by high-capacity non-volatile and disag-
gregated memories, as they allow for more data to be held in
memory, with access latencies comparable to DRAM [53, 72].
Just as new memory technologies are shifting performance
bottlenecks away from storage and towards multi-core CPU
contention, such diverse workload requirements raise the bar
for in-memory database scalability.

2.1 Prior Work

Existing efforts to improve the scalability of in-memory databases

have focused on three bottlenecks: (i) range index structures;

and serializable transactionisolation for both (ii) low-contention

workloads and (iii) high-contention workloads (i.e., transac-
tions with dependencies). The work on range index structures
has happened in isolation from the rest. This observation is
key to the case for ScaleDB (§3).

Range index structures. Range indexes are an efficient
method for data retrieval. In addition to providing exact-
match lookup of database records in logarithmic time, they
also allow fast scans of records in sorted order. Despite decades
of work [37, 38, 48, 59-61, 63, 65], scalability of range indexes
under concurrent accesses remains elusive. This is primarily
due to the hierarchical nature of these data structures. For
instance, in a B"tree index, inserting or deleting a new record
can require modifying a chain of internal nodes all the way up

to the root. Performing such modifications atomically while
supporting concurrent access from multiple threads requires
synchronization [45, 77].

One approach to synchronization uses locks [48, 59, 65].
Recent optimizations [37, 38, 63] remove shared cache line
contention between readers trying to acquire a lock per node,
by making them optimistic. However, readers must read a ver-
sion number per node to verify their optimistic assumption,
which can cause contention with writers trying to increment it.
Similarly, writers still contend on cache lines, trying to acquire
spinlocks on individual tree nodes. Frequently accessed nodes
such as the root of a B*tree or the index node at the end of the
range (for append workloads) become hotspots of contention.

An alternative are lock-free data structures [46, 49, 61]:
they use atomic operations and multi-versioning to avoid
lock contention on critical sections. Yet, as recent work [45]
points out, their theoretical guarantees are “mostly irrelevant
to performance and scalability on multi-core hardware”, as
they cannot avoid contention on global memory locations.

A recent study [77] evaluated state-of-the-art range in-
dexes [46, 48, 60, 61, 63] on the YCSB [40] benchmark and
showed that none of these indexes scale well. Even on a read-
heavy workload with only 5% inserts, these indexes only scale
up to 12X when increasing cores by 20X. On an insert-only
workload with threads appending new inserts to the end of
a range, their scalability collapses when going from a sin-
gle NUMA node (20 cores) to two NUMA nodes (40 cores),
with throughput dropping between 50% to 66%. The limited
scalability of range indexes has been reported in previous
work [62] and we expand on this analysis in §3.1.

Serializability for low-contention workloads. The use of
a shared timestamp for ordering transactions [33, 57] made
timestamp allocation a principal bottleneck to the scalabil-
ity of concurrency control [78]. Even when updated using
atomic hardware primitives, a shared timestamp can force un-
related transactions to contend and results in excessive cache
coherence communication. Recent work eliminates the times-
tamp bottleneck, but incurs high transaction commit latency
due to either a high abort rate [62, 79] or batching in group
commits [73].

Anapproach proposed by the H-store project [54, 70] avoids
coordination by partitioning the database and accessing each
partition from a single thread. This approach scales well for
applications whose databases can be cleanly partitioned and
where most transactions only access a single partition. How-
ever, many applications do not fit this profile and can expe-
rience worse performance [69].

Serializability with dependencies. Much work has fo-
cused on scaling serializable ordering on contended trans-
actional workloads [42, 44, 51, 55, 56, 58, 62, 66, 67, 76]. Se-
rializability requires respecting data dependencies among
transactions reading and writing the same database record.

362 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Primary Index on PERSON (SSN)

Table PERSON

SSN Name Zipcode

111| Bob | 90210
222 | Abe 10000
333| Abe | 90210

{222 | 333]]

(a1]]

Primary Index on ZIPCODE (Zipcode) Table ZIPCODE

Secondary Index on PERSON (Zipcode)

[[<10000,222> [[[——>|] <90210, 333> || <90210, 111> ||

Secondary Index on PERSON (Name)

[<Abe, 222> || <Abe, 333> [<Bob, 111> [[]

20000 s0210]|
90210 CA
10000 NY

Figure 1. Simple database layout with range indexes. Tables are represented by primary indexes. Records are stored sorted by primary index
key. Schema information is stored in a catalog (not shown). Arrows are pointers.

100
90
80

>
£14 _ 70
2 2
T 2 60
410 & 50 .
2 g £ 20 Benchmark [Read |[Range| Database size
° Q2
5 6 < 3 Txns| Scans

4 20 TPC-C 8%| 7.83%| 10 warehouses

2 10 SEATS 45%| 23%|100K customers

0 0 Epinions 50%| 100% 200K users

0 4 8 12 16 20 24 28 32 36 0 4 8 12 16 20 24 28 32 36
- Number of Threads Number of Threads Table 1. Benchmark details.
Partitioned Indexes ©-Shared Indexes
Partitioned Indexes ©-Shared Indexes
(a) Goodput. (b) Abort rate.

Figure 2. Cicada scalability on TPC-C (C,,;=;rq) With partitioned and shared indexes.

Though such dependencies are ultimately a barrier to scala-
bility, various techniques can reduce their impact, including
multi-versioning [44, 58, 62], static analysis [66, 76], exploit-
ing commutativity in some workloads [51] and backoff [62].
These techniques are complementary to our work, which is fo-
cused on mechanism contention, i.e., on contention that arises
between unrelated transactions as an artifact of how the data-
base implements certain mechanisms (e.g., range indexes),
rather than from fundamental requirements of its isolation
guarantees.

3 The Case for ScaleDB

ScaleDB’s main contribution lies in recognizing that removing
the indexing bottleneck requires looking beyond range index
structures; instead, it is necessary to understand and correct
the architectural design decisions that make range indexes
a hotspot of contention in today’s in-memory databases.

Range index background. To understand the significance
and structure of range indexes, consider Figure 1, which shows
a simple database with two tables. Tables are implemented
as collections of indexes and include one primary index and
zero or more secondary indexes. For example, table PERSON

has primary index SSN and two secondary indexes, Name and
Zipcode. Table records are stored on the heap and pointed to
by the table’s primary index.

Range indexes have many uses. A primary range index
allows quick retrieval of a table’s records by primary key for
both point and range queries. Primary keys within a table
must often be unique and an index can enforce this uniqueness
constraint efficiently. Secondary indexes are also used exten-
sively. They support analytical queries [39] and help maintain
the consistency of the database by serving as foreign keys, i.e.,
columns of a table that refer to a primary key of another table.
For example, a foreign key constraint on the Zipcode column
in the PERSON table implies that deleting the 90210 zipcode
from the ZIPCODE table requires deleting all records with the
90210 zipcode from the PERSON table. The secondary index
on the Zipcode column makes this operation efficient—in the
Figure, the root node of the corresponding secondary tree
points directly to the range of all SSNs in the 90210 zipcode;
we can use these values as keys to traverse the primary index
of the PERSON table.

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation

363

Range indexes can limit scalability because concurrent
updates to the same index, even if caused by unrelated trans-
actions, can lead to contention. For instance, inserting or
deleting a single record in a B+-tree (Figure 1) may alter its
leaf node structure (aleaf node may split, or may coalesce with
another leaf node), requiring the atomic update of potentially
many internal nodes, all the way to the root.

3.1 Database Scalability Analysis

To explore the limits of database scalability, we evaluate Ci-
cada [62], a state-of-the-art scalable in-memory database.
Cicada was shown to be more scalable than several other
databases [42, 55, 56, 73, 79]. However, as we show next, it
still incurs range index mechanism contention.

We run TPC-C [22], a standard OLTP benchmark simulat-
ing purchase transactions on a configurable number of inde-
pendent warehouses. We use a machine with two CPU sockets,
each with an 18-core Intel Xeon Gold 6154 CPU. We increase
the number of transaction processing server threads from 1
to 36 and use as many warehouses as threads for each data
point. This configuration (C,,n=snq) has very low contention,
since threads (almost always) run queries on their own ware-
houses, thus avoiding contention on the same records with
other threads. Therefore, C,,p=;1q allows us to isolate and un-
derstand the scalability impact of mechanism contention on
range indexes.

Figure 2a shows Cicada’s goodput scalability relative to
a single core. Cicada stops scaling beyond 24 cores on the
canonical TPC-C workload, with indexes shared between be-
tween threads. To show that scalability is limited by range
index mechanism contention, we also evaluate a configura-
tion where 8 out of the 9 TPC-C tables, and their associated
indexes, are partitioned by warehouse id?. This configuration
scales well for C,,p=;pq, but it does not generalize to more
skewed workloads.

Figure 2b shows that Cicada’s poor scalability on the shared
index configuration is due to an increasingly high abort rate.
To reduce multi-core contention on the same index nodes
by multiple threads, Cicada uses multi-version concurrency
control (MVCC) for both its records and indexes; if an index
node needs to be modified, Cicada creates a new version in
thread local memory and installs it into the index on success-
ful transaction commit. However, to enforce serializability,
transactions that perform a range scan must, at commit time,
validate that no new record matching the range predicate
was inserted since the scan (i.e., must avoid phantoms). For
this purpose, at transaction commit, Cicada validates all in-
dex nodes whose key range intersected with the range scan
predicate; if this validation fails, the transaction aborts. Thus,
range index contention manifests in Cicada as a higher rate
of transaction aborts instead of contention on index nodes.

2The default configuration of the Cicada prototype

3.2 When Can Range Indexes Scale?

The previous analysis demonstrates that scalability in state-
of-the-art databases is primarily limited by contention on
range indexes. A key contributor to this contention is that the
updates to range indexes, that take place once a transaction
commiits, are performed synchronously. Of course, all indexes,
whether range or hash, must, on a query, return the most
recently committed record corresponding to an index key,
but range indexes have an additional obligation: they must
ensure that range scans issued immediately after a transac-
tion commits will not miss any record inserted or updated by
that transaction. It is to discharge this obligation that records
are inserted synchronously into all primary and secondary
indexes — which not only requires sorting these records with
respect to all records already in the table, but also creates
contention on the internal nodes of a range index among
otherwise non-conflicting transactions.

Our design is then motivated by a simple question: can this
obligation be met without triggering a synchronous cascade of
updates over shared data structures? To move towards an an-
swer, we run an experiment to measure the latency between
the last time a record is written (inserted or updated) and
when it is read as part of a range scan (W-to-RS latency).

We use three transactional application benchmarks (Ta-
ble 1) from the OLTP-bench [43] suite, designed to evaluate
modern cloud database workloads. These benchmarks range
from moderately write-heavy (Epinions) to very write-heavy
(TPC-C), and the percentage of read queries involving a range
scan varies from a single digit to 100%. We ran these bench-
marks on a MySQL 8.0 instance running on a 20 core (40
hardware threads) Intel Xeon machine, with as many clients
as needed to saturate throughput. We emulate an in-memory
database by setting the MySQL in-memory buffer pool to a
large-enough size, so that in all three cases the entire database
fits in memory and we are never disk-bound.

Figure 3a shows the cumulative distribution of the W-to-RS
latency. For Epinions and Seats, we use a single curve each to
characterize the behavior of all their range scans: we find that
the 5th percentile W-to-RS latency is above 500ms and the me-
dianisbetween 8 and 85 seconds. We instead report the latency
of each range scan in TPC-C separately, since they behave
quite differently: DelivSumOrderAmt, a range scan on a pri-
mary index, responsible for 3% of all TPC-C read queries, has
amedian W-to-RS latency of 1ms; the other two TPC-C range
scans are on secondary indexes and their median W-to-RS
latencies are orders of magnitude higher. Epinions and SEATS
also show lower W-to-RS latency for range scans of primary
indexes, though with a much smaller (2X to 5x) gap. The low
W-to-RS latency of DelivSumOrderAmt is due to the TPC-C
Delivery transaction, which contains an update followed by
aread on the same range in the Orderline table. We discuss
in §4.2.3 how ScaleDB’s design avoids unnecessary aborts in
such situations and therefore performs well on TPC-C (§6).

364 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

o+ 2z 3 4 5 6 7 8 3
Latency (log,o(us))

HEpinions SEATS
©TPC-C (DelivSumOrderAmt) -ATPC-C (CustByName)
TPC-C (DelivGetOrderld)

(a) Write to range scan (W-to-RS) latency.

0.9 /i
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 2 3 4 5
log;o (num rows)

©-Epinions SEATS »TPC-C

(b) Records returned by range scan.

Figure 3. Range scan property distributions of three application benchmarks.

Figure 3b shows the distribution of the number of records
read by range scans in each benchmark. For all benchmarks
and all range scans, the median number of records read was
at most 6, while the 99th percentile was at most 26 records.
Epinions had two range scans in read-only transactions that
read thousands of records. However these range scans com-
prised only 0.068% of all read queries in Epinions and had a
median W-to-RS latency of at least 66 seconds.

For brevity, we omit a similar analysis for point queries,
but their behavior was mixed. For instance, in TPC-C, four
point queries had median Write-to-Point-Query (W-to-PQ)
latencies ranging from 350us to 21ms. These point queries
— from the NewOrder and Payment read-write transactions,
which together comprise 90% of the benchmark - read heav-
ily updated records in the District and Warehouse tables. At
the other extreme, two point queries in TPC-C had median
W-to-PQ latencies of 4 and 15 seconds.

Conclusion. The overall picture that emerges from this anal-

ysis is the following:

1. While point queries often read recently written records,
for range queries that is the exception rather than the rule.
This holds especially true for secondary indexes.

2. In the vast majority of cases, the number of records that a
range query reads (especially as part of read-write trans-
actions) is small.

3. Large range scans rarely happen and, when they do, they
are usually within a read-only transaction.

These findings suggest an opportunity to fundamentally
rethink how to maintain range indexes within in-memory
databases. If, in the common case, synchronous updates to
range indexes are not necessary to produce consistent range
scans, it may be possible to design new scalable data struc-
tures that can synchronously store record updates and hold
them temporarily, until they are asynchronously applied to
the range indexes. Of course, range scans should be always
consistent, not just in the common case, and the mechanisms

needed to enforce this guarantee should themselves be scal-
able. These are the opportunities and challenges that shape
the design of ScaleDB.

Why are asynchronous range index updates scalable?
Asynchronously updating range indexes offers a host of op-
portunities that we seek to exploit. Accumulating a number
of updates, so they can be applied as a batch to the range
index, is more efficient than applying individual updates, as
it avoids repeated walks of the index tree (e.g. inserts to the
same B+ tree leaf node). Given the cache contention arising
from concurrent walks of the range index, batched updates
benefit CPU cache locality and improve performance isolation
among CPU cores. They also incur less overhead for repeated
lock operations, since they allow us to acquire locks only once
for several updates. We can facilitate this process by sorting
accumulated updates before applying them to the range in-
dex, outside of a critical section. Finally, for skewed access
distributions that update the same record repeatedly within a
short time span, only the last update in the batch needs to be
applied to the range index, reducing the overall work required.
We will see in §4.1 that asynchronous updates are scalable,
while relieving the underlying range index structure of fine-
grained locking, multi-versioning, and lock-free techniques.
This simplifies serializability, as we will see in §4.2.

4 ScaleDB Design

The foundation of ScaleDB’s design, building on the analysis
in §3, is that range indexes are asynchronously updated to
provide scalability. But how can this asynchronous architec-
ture provide scalable transaction processing? And how can
serializable isolation be guaranteed when range indexes are
no longer kept synchronously consistent?

Scalable transaction processing with indexlets. To asyn-
chronously update range indexes, we need a temporary store
for writes that can be scalably maintained and flushed with

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 365

minimal overhead. We tackle this problem with a new data
structure: hash-based indexlets that temporarily and syn-
chronously record all range index writes. Indexlets leverage
the flat structure of hash indexes to avoid contention among
updates to unrelated records. A common issue with hash in-
dexes is rehashing - resizing the hash index when it is at
capacity [14]. Database hash indexes require rehashing, as
their size cannot be known a-priori. Instead, indexlets only
hold updates temporarily and are periodically merged by
ScaleDB into range indexes. Thus, rehashing can be avoided
by bounding the maximum number of delayed writes held in
an indexlet based on the W-to-RS latency and write rate to the
underlying table. We describe indexlets and how to efficiently
size and scalably merge them in §4.1.

Serializability with asynchronous range index updates.
We design asynchronous concurrency control (ACC), a concur-
rency control protocol that provides serializability in an asyn-
chronous database architecure. ACC integrates optimistic
concurrency control (OCC) [57, 73] with asynchronous range
index updates. Both are optimistic approaches: just as OCC
assumes that most transactions do not contend, asynchronous
range index updates assume that most W-to-RS latencies allow
us to leave range indexes temporarily stale without negatively
affecting goodput.

Since recent writes are held in indexlets, asynchronously
enforcing serializability with good performance requires first
checking indexlets on any point read, and, for range scans, ef-
ficiently detecting the small number of instances when a scan
has accessed a stale portion of a range index. This check is nec-
essary to avoid phantoms[32], as well as to ensure that transac-
tions read the most recent value of each key returned by a scan.

ACC’s technique for avoiding phantoms relies on phantom
indicators, which leverage ACC’s asynchronous design to scal-
ably indicate the existence of a phantom to range-scanning
transactions. Using the leaf nodes of the range index as par-
titions of its keyspace, writing transactions can produce a
unique phantom indicator for each range covered by a leaf
node. Each leaf node evolves through a series of version
changes that happen whenever a merge to a range index
affects that leaf node. Phantom indicators, uniquely derived
from leaf nodes and their current version, are inserted by
transactions into phantom detection indexlets (or phantom-
lets). Maintained for each range index, phantomlets allow
range scanning transactions to scalably detect phantoms at
commit time. We detail ACC and phantomlets in §4.2.

Durability. To provide durability, ScaleDB uses write-ahead
redo logging. Transactions receive a globally-ordered times-
tamp from a system-wide clock, a hardware feature that in-
dustry trends and experimental evidence (§5.4) indicate will
remain in future servers. As a result, threads can scalably log
their transactions without coordination at commit time while
pushing the overhead of merging logs to recovery.

SK Range Scan
---»[333] Abe | 90210 |

Indexlet

T T T 77 """ Phantomlet |
| Secondary Key (SK) Range Indexes

PK
Tz Point |

[)
@)
O o |
wa O 2
. Read o~ I“HZ]EEQ O |
3PK Range 1Periodic : | | | | | |’"’| | | | | | o I

Scan Merging T—— — —— —————— ——— ———
X primarykey(PK)Rangeindex 1
| Im! - Phantomlet |
cmn
([[111]]123 |\}\—+||zzz|‘| 345|L\ o |
| Vl’_,l |\‘ _\i I Al T O :
:|111| Bob | 90210 |/[222] Abe [10000 | |O |

Figure 4. Asynchronous range index update for the PERSON table.

Example. To see how it all fits together, consider the exam-
ple in Figure 4. Transaction T; does a range scan by zipcode,
which is executed on the appropriate secondary range index.
Concurrently, T; inserts the record with SSN 333 into the PER-
SON table and does a point read for an SSN from the same
table. T5 does a range scan by SSN, which is executed on the
primary range index.

Instead of synchronously updating the range indexes and
potentially contending with other transactions, ScaleDB in-
serts T’snew record, using its primary key (SSN), in the table’s
indexlet and marks it as valid (filled circle). It does this atom-
ically by acquiring a write lock on the indexlet entry. This
may cause true contention if concurrent transactions access
the same key, but it does not cause mechanism contention.
T, also does a point read for an SSN. To do so, it first checks
the indexlet for the latest version of the record, temporarily
holding a read lock on the record’s indexlet entry. It is not
found there (empty circle), so T, next reads from the primary
range index. Range indexes have been read-only, and thus
scalable, for this execution.

Periodically, the contents of the indexlet are merged into
the underlying primary and secondary range indexes. The
indexes are concurrent, so conflicting accesses by reading and
merging threads are synchronized. We discuss the details of
ScaleDB’s concurrent range index in §5.3. Because merging is
periodic, it occurs in a coordinated and concentrated fashion
when compared with synchronous range index updates.

Range-scanning transactions consult phantomlets to de-
tect phantoms due to newly inserted records. They do this for
each range index leaf node traversed as part of the range scan.
To aid phantom detection, each writing transaction indicates
once per version for a leaf node that it has inserted records.
Here, T, inserts a phantom indicator for the [222,345] leaf
node into the phantomlet, indicating a possible later merge
of the key with SSN 333 into that range index node. Upon a
merge, not all updates might fit in the [222,345] node and the

366 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

structure of the range index might be altered during a merge.
However, phantom indication is only required for unmerged
records. We discard phantom indicators when the indicated
records are merged. A reading transaction scanning just the
[111,123] node does not abort, as there are no phantoms
indicated for this node.

4.1 Asynchronous Range Index Updates

To update range indexes asynchronously, we record delayed
writes in indexlets for the duration of a per-indexlet and per-
thread merge epoch. At the end of an epoch, a thread merges
its writes from the indexlet into the associated range indexes,
and starts a new epoch. For a given indexlet and thread, the
merge epoch ends as soon as either (i) the thread has filled
a maximum batch size of entries in the indexlet; or (ii) a max-
imum epoch duration has been reached. Both batch size and
maximum epoch duration are configured separately for ev-
ery indexlet, and each thread decides independently for each
indexlet when it has reached the end of its merge epoch.

Indexlets. ScaleDB uses hash-table-based indexlets with
open addressing [41] to synchronously and scalably absorb
concurrent, committed writes that affect range indexes. Thus,
indexlets are associated with tables that have range indexes.
For each such table, ScaleDB creates an indexlet, indexed by
the table’s primary key. If there is no primary key, ScaleDB
creates an implicit primary key (a common practice [12]).
The per-table indexlet naturally covers writes that affect sec-
ondary indexes, as secondary indexes refer to the primary
index (as shown in Figure 1).

Recorded writes include insertions, updates, and deletions.
Insertions and updates affecting a range index are simply
recorded in the corresponding indexlet, and the record is up-
dated on the heap (in per-thread arenas to avoid contention
on memory allocation). Special care is required to ensure that
deletes are handled consistently. Indexlets mark a record as
deleted instead of deleting its key from the indexlet. This ap-
proach has two benefits: it ensures that a later read of the same
key finds the deleted record in the indexlet rather than finding
an older version in a range index; and it allows coalescing a
key deletion followed immediately by an insert of the same
key, without merging the delete into the range indexes.

Merge epoch. Each thread independently decides when its
merge epoch ends, after which it merges the keys and record
references into the table’s range indexes. A thread can occupy
a maximum batch size of b; entries in any given indexlet i
before it has to merge them into the range indexes. Too small
a b; causes contention similar to synchronous merging into
range indexes. Too large a b; results in stale range scans, which
can lead to transaction aborts. We use b; = Expected write
rate(table;) X W-to-RS latency/(table;).

During quiescent periods for write transactions, threads
may not reach their maximum batch size quickly enough, leav-
ing range indexes stale for too long. To avoid this, we cap the

length of the merge epoch of each indexlet separately, based
on the W-to-RS latency of that indexlet’s table: thus, a thread’s
merge epoch ends when it either reaches its maximum batch
size or its maximum merge epoch length.

To make hash collisions rare, the size of indexlet i is set to
s;=4x#tXb;, where #t denotes the number of threads. Given
that each entry in an indexlet only occupies a single cache
line, this results in modest memory consumption even for
tables with a high write rate (§6.3).

Asynchronous merging. Eachthread keepsalist ofindexlet
entries where it performed a write. At the end of its merge
epoch, it sorts this list in primary range index key order (§3.2),
and then iterates through the list, atomically merging each
individual record. Merging involves updating the range index
and removing the record from the indexlet, while holding a
per-entry lock, thus ensuring atomicity for each key’s merge.
Each lock is released as soon as the key is merged into the
primary index.

If secondary indexes exist, the merging thread additionally
retains private copies of each record reference in thread-local
storage. After the primary range index is merged, the thread
then merges each secondary index, using these copies.

After merging each range index (primary or secondary),
the merging thread also decrements any phantom indicators
that it had inserted into the corresponding phantomlet during
the concluded merge epoch (§4.2.1).

4.2 Asynchronous Concurrency Control

We design asynchronous concurrency control (ACC), a con-
currency control protocol that provides serializability within
anasynchronous database. ACCis based on optimistic concur-
rency control (OCC), which it integrates with asynchronous
range index updates. To do so, ACC uses two novel constructs:
phantom indicators (§4.2.1) and locks in indexlets for atomic
commit of transactional writes (§4.2.2).

OCC minimizes transaction contention by optimistically
executing transactional reads and atomically publishing a
transaction’s writes at the end of its execution. To do so, OCC
transactions execute in three phases—read, validation, and
commit. During the read phase, reads are done optimistically,
without holding locks, and are tracked in a transaction’s pri-
vate read set; writes instead are buffered in a private write set.
The validation phase ensures that transactions may commit
atomically. To do so, the database acquires locks on all values
identified in the write set and then validates that collected
values in the read set have not been altered by concurrently
executing transactions. If the reads are validated, the commit
phase commits the transaction’s writes and releases its locks.
Otherwise, the transaction aborts (releasing locks as well).

ACC extends the OCC phases and integrates them with
asynchronous range index updates. During the read phase,
point reads search the indexlet first, and, if they miss, search
the primary range index. The same process is followed for

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 367

Validating

_______________ Indexlet)] Reads
| Range Read Set | 4‘”“—“333)—
e T O |a T
T @)
O LockinsHashTbl()
Range Scan [SSN >= 222 O

)
O

L — — “y O
[112] Bob [90210 |/[222] Abe | 10000 | | O

E
©)

(a) Before validating successfully, T acquires locks for atomically
inserting the record with SSN=333 into leaf index node [222,] and
its phantom indicator <0x4ff, 13>. Concurrently, T> does a range
scan for SSN > 222, during its read phase.

Indexlet

® |-+[333] Abe | 90210
8 a L [Range Read Set |

‘%&: | __<Oxaff 13> |
O

2 step2.

Check existence of
phantom indicators in
Range Read Set

Get current Phantomlet

, S phantom
/ .. 1
4 \‘A indicators for ., i 1
SSN >= 222,
Compare with

©)
X -* Range Read Set 8

%
|111|I Bob |I 90210 |/[222] Abe | 10000 |

(b) T> detects phantom indicator <0x4ff, 13> corresponding to
[222,] while validating the range scan SSN > 222. It will abort:
T; committed earlier, but T5’s range scan missed the record with
SSN =333, inserted by Tj in the indexlet.

Figure 5. Asynchronous phantom detection example.

updates and deletes, during the validation phase, allowing
existing records to be brought into the primary indexlet first,
before being updated in place. This guarantees that point
queries always read the latest value of a record. On the other
hand, range scans (from primary or secondary indexes) are
executed directly on the range indexes, but need to check for
phantoms at commit.

4.2.1 Phantom Detection

Phantom detectionisdifficultin a database with asynchronously
updated range indexes, as phantoms may occur in indexlets,
which do not support efficient range lookup. ACC’s technique
for detecting phantoms leverages the leaf nodes of a range
index which undergo coarse-grained version changes due
to asynchronous merges by different threads. To track these
changes, each leaf node [maintains a version number v; which
is incremented only when an insert or delete is merged into
that node. If [splits due to an insert, then half of its keys
are moved to a sibling leaf node m with v, = 0 while v; is
incremented.

To detect phantoms, ScaleDB uses a phantomlet per range
index to perform a scalable variant of index node valida-
tion [73]. Phantomlets use the indexlet architecture (§4.1),
but do not need merging. Inserting transactions atomically
insert phantom indicators into phantomlets at transaction
commit, indicating that they have inserted a phantom into a
corresponding range index leaf node. The phantom indicator
is composed of the concatenation of a leaf node I’s memory
address M; and version ;.

At commit time, for each inserted key k, the inserting
transaction asks the range index for the phantom indicator
< Mj,v; > of the leaf node [that currently covers the range in-
tersecting with k. If the phantom indicator does not exist in the

phantomlet, it is inserted. If the transaction validates, it atom-

ically increments the value of the phantom indicator (initially

0). This is accomplished by locking phantom indicators as part

of locking the transaction’s write set (using LockInsHashTbl

or LockRUDHashTbl on the phantomlets, see §4.2.2).
Threads keep track of the phantom indicators they have

inserted and decrement their values at the end of their merge

epoch. The last thread which decrements the value to 0, re-
moves it from the phantomlet.

When validating a range scan, a reading transaction can
use the same phantom indicator to check whether a phantom
was inserted in a range covered by the leaf node at the version
it read. To do so, ACC splits OCC’s read set into two parts
and extends them with additional information. For each point
read, the key of a record r is stored along with a copy ¢/ of
the record’s current commit timestamp ¢, (§4.3) in a point read
set. Storing the commit timestamp allows efficiently verifying
whether the record changed, later during validation. For every
range scan, ACC stores the keys of the scan results in the point
read set, but also stores in a range read set, a phantom indicator
for each range index leaf node encountered during the scan.
Finally, it stores the range scan predicate in the range read set.

Read set validation happens differently for the point read
set and the range read set:

o For the point read set, ACC reads from the indexlet and (if
not found) searches in the primary range index. If the key
of record r is not found in either index or t7 # t,. (r received
a write), the transaction is aborted. An optimization here is
to only abort if t, < tr, where t7 is the timestamp allocated
by this committing transaction (§4.3).

o For each range scan, ACC asks the range index for the cur-
rent list ¢ of phantom indicators that match the range scan
predicate. If ¢ is different in length than the original list o

368 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

stored in the range read set, it aborts. If not, then there is still
the chance that phantoms were inserted, but they have not
been merged yet or they were merged but did not result in
leaf node splits. ACC goes through each corresponding pair
of phantom indicators in ¢ and o, at the same index in the
lists, verifying that the pair is identical, and that performing
a LockFreeRdHashTbl (§5.2) for this phantom indicator on
the phantomlet returns nothing. If any of these checks fail,
it aborts.

Figure 5 shows a simple example illustrating asynchronous

phantom detection.

4.2.2 Atomic Commit

ACC holds locks on keys between the validation and commit
phases, in order to atomically publish a transaction’s writes.
Since ScaleDB writes are asynchronous, ACC locks need to
cover records referenced by indexlets. Indexlets never rehash,
allowing ACC to hold locks directly in indexlet entries as a
way to hold locks on records.

To build transactions, ACC uses two types of locks on
records: LockUniquelnsert is used to atomically insert a record
with uniqueness constraints, while LockUpdDel is used to
atomically update or delete an existing record. These locks
are acquired on a transaction’s write set at the start of the
validation phase, and released either at transaction abort or
at the end of the commit phase.

Unique insertion. To lock for the unique atomic insert of

arecord, ACC performs two steps:

1. ACC searches for a duplicate record in the indexlet and, if
not present, acquires a lock on an empty indexlet entry for
the record to be inserted. This step is done atomically by
calling LockInsHashTbl, provided by the indexlet.
LockInsHashTbl acquires per-entry spinlocks along the
hash probe path. If it finds an empty entry, it sets e;ps, the
future location of the record being inserted, to that en-
try’s index. If the entry is not a search terminator (§5.1), it
continues the search for a duplicate record, until the probe
lands on a search terminator. If a duplicate is found, all spin-
locks are released and the transaction is aborted. Otherwise,
LockInsHashTbl is successful. In that case, it releases any
acquired spinlocks on entries after e;, in the probe path.
Spinlocks on e;,; and entries before it in the probe path
are held until LockUniquelnsert is released: this allows
atomically inserting a record and updating search termi-
nation metadata (see §5.1) at transaction commit. With a
properly sized indexlet, probe lengths are short and there
is negligible mechanism contention for unique inserts.

2. ACC searches the primary range index to make sure that
the key has not already been inserted there.

If either step fails, the transaction aborts. If both succeed, a
lock for unique insert has been acquired. Our open addressing
scheme probes indexlet entries in a deterministic order for

A Indexlet
T2 Is:cll'(‘I Emp!yI oc i Key i Ref
LockUniquelnsert(111) il N T
Step 1.
LockinsHashTbl(111]
s7] @ Fale] 1| 333 | --|»333] Abe [90210
Step 1. 58| £ ! False! O 222 I
\
LockinsHashTbl(111) 59 a True 0 “‘
Tl 1/9:5; \
LockUniquelnsert(111) “.
|
-+

|

Searsc‘:Ff,uzr.llll y "‘~~> ": Phantomlet |
]
(1[111][123 |‘k:+||zzz||| 3as || o |
it X S S @) |
:|111| Bob | 90210 |/[222] Abe | 10000 || |O |

Figure 6. LockUniquelnsert Example.

each record. Hence, contending transactions attempting to
insert the same record are serialized.

Figure 6 shows an example illustrating LockUniquelnsert.
Transactions T; and Ty, on different threads, are in their val-
idation phase. They are concurrently trying to acquire Lock-
Uniquelnsert for a record with primary key (on SSN) 111. T
acquires LockInsHashTbl in step 1. Its hash probe starts at en-
try 57 in the indexlet, which is currently occupied by a record
with key 333—inserted by a recently committed transaction.
Subsequently, another transaction brought the record with
key 222 into the indexlet, for an update; it was inserted into
entry 58 due to collision with key 333. T; ’s hash probe acquires
spinlocks along its probe path, until it lands on entry 59, which
is both empty and a search terminator: thus, successfully ac-
quiring LockInsHashTbl for key 111. Here, overflow counts
(OC in the figure, see §5.1) are used to terminate searches
(when OC = 0).

In step 2, Ty searches the primary range index for key 111,
to ensure uniqueness; since it finds the record, it will abort.
If T; had been able to commit, it would have incremented the
OC for entries 57 and 58 and inserted the new record (with key
111) into e;,s = 59, before releasing the spinlocks. Meanwhile,
T, gets serialized behind T; (on entry 57’s spinlock), trying to
acquire LockInsHashTbl. It will eventually abort as well.

Update and deletion. To acquire a LockUpdDel, ACC per-

forms two steps:

1. It searches the indexlet for the record and, if found, locks

the entry. This step is done atomically by calling LockRUD-
HashTbl, provided by the indexlet.
LockRUDHashTbl is simpler than LockInsHashTbl, since it
doesnotneed to atomically enforce uniqueness or maintain
the metadata for search termination. It acquires per-entry
spinlocks along the hash probe path, but releases each spin-
lock as it moves to lock the next entry in the path. A probe
can end when it either finds the record or lands on a search
terminator entry.

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 369

In addition to its use in the first step of LockUpdDel, Lock-

RUDHashTbl is also used to atomically search the indexlet

for point queries, during the read phase of the transaction.
2. If the record was not found in the indexlet, ACC acquires

LockInsHashTbl for the record, fetches the record from

the range index, inserts a reference to the record in e;,;

and then downgrades the lock to LockRUDHashTbl, which

involves releasing the spinlocks on the entries before e;;5

in the probe path.

For range updates or deletes, we search the range indexes
directly and acquire LockUpdDel for every key satisfying
the predicate. If there is not enough space in the indexlet, the
transaction aborts. In this rare case, the indexlet is merged and
temporarily disabled to retry the transaction synchronously,
re-enabling the indexlet after the transaction commits.

4.2.3 Repairing Stale Range Scans

During the read phase, ACC can repair stale scans before re-
turning them, to reduce the chance of a later transaction abort.
This is typically done for scans used in a later update or delete
query. For instance, the TPC-C Delivery transaction has a
range scan that returns the earliest order within a district in
the NEW-ORDER table and then deletes that order in the next
query. This transaction can abort, even for a single thread,
if the scan is done on the range index, but the earliest order
returned by the scan has already been marked deleted in the
indexlet in a previous Delivery transaction.

ACCrepairs such scans, prior to returning them, by looking
up each key in the indexlet to check if it has been updated or
deleted. If so, it repairs the scan to return the latest version.
To avoid paying this cost for all range scans, the client can
explicitly set this option in the query for scans that will be
updated or deleted.

ACC also maintains a per-thread per-table index of the
keys which were inserted by each thread during its current
merge epoch. When returning a range scan, ACC repairs it
by merging any records returned by running the same scan
on the local index as well. This avoids spurious aborts by the
phantom detection algorithm (§4.2.1), due to keys that were
inserted by the same thread in a prior transaction and are
waiting to be merged into the range indexes.

4.3 Durability

ScaleDB achieves durability using write-ahead logging to a
redo log. Each worker thread writes to its own separate log,
without coordinating with any other worker thread. To en-
sure that transactions do not read values that have not been
made durable, a thread only releases write locks and replies
back to the client once it has logged the transaction to its
redo log. Each redo log entry contains the new values of the
keys written by the transaction T as well as a commit times-
tamp t7 assigned to it during the validation phase, after all the
locks have been acquired by ACC. This timestamp, unique for
each transaction, is derived from a scalable system-wide clock

(§5.4) and is consistent with T’s place in the serializable or-

der. During recovery, ScaleDB first merges all the per-thread

transaction logs in timestamp order, and then replays them.
To see why ScaleDB is recoverable despite uncoordinated

logging, consider the example of three transactions Ty AN

T, o, T5, each of them running on a separate thread. Ty writes
x1=42 and T, read-modify-writes that value to x, =52, thus
creating both a write-after-write dependency (ww) and read-
after-write (wr) dependency with Ty. Next, T, reads y; = 33;
later T; read-modify-writes it to y, =36, creating a write-after-
read (rw) dependency between T, and Ts.

Because ScaleDB only releases write locks after the log
entry has been made durable, if T; is not logged, then T, will
either read x; or it will wait for T;’s write lock to be released
to read x;. Thus, after a crash, if T, read x; and is logged, then
T; must be logged as well. This argument extends transitively
to a chain of such direct dependencies.

The second possibility is that after a crash T; is not logged,
but both T; and T; are. In this case, ScaleDB must not have
committed T; and replied back to the client. Thus, it will re-
cover only T; and Ts, in order, which is fine. Notice that, if, in
fact T; does get successfully logged, ScaleDB’s system-wide
timestamps allow correctly ordering T; and T5’s log entries
at recovery, despite the fact that there was no direct commu-
nication among them.

4.4 Correctness

Using ACC, ScaleDB guarantees serializability [28], with the
additional guarantee that the equivalent serial order is one
where transactions are ordered by their commit timestamps.
ACC derives its correctness guarantees in part from the guar-
antees provided by the locks and data structures it builds upon,
as well as its descendence from OCC, which guarantees serial-
izability [73]. The key difference from OCC is that ACC must
deal with ScaleDB’s asynchronous updates to range indexes.
Our proof of correctness [64] shows that ACC’s atomic com-
mit and phantom detection protocols provide serializability
in this scenario.

5 Implementation

We implement ScaleDB by modifying the Peloton [18] in-
memory SQL database, written in C++. We replace the stor-
age back-end, while retaining the code for networking, SQL
parsing, query planning and query optimization.

5.1 Indexlet and Phantomlet Hash Table

Our indexlet and phantomlet implementations build on a
simple open-addressing [41] hash table which uses linear
probing for resolving collisions. We considered more sophis-
ticated open-addressing schemes like Cuckoo hashing [2, 7]
but found that the ability to hold transactional locks would
have been complicated by displacement of keys and the fact
that the cuckoo hashing probe path is an undirected graph
with a possible cycle, which could have caused deadlocks.

370 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Also recall that our hash table does not need to rehash: thus
we can avoid mechanism contention on maintaining a count
of occupied entries in the entire hash table.

One issue with using an open addressing hash table is how
to ensure that searches terminate correctly after merging.
When removing a record r from an indexlet entry, we cannot
simply mark the entry as empty, because then any records
displaced by r would not be found on a subsequent lookup
(the search would terminate at r). Tombstones, which are tra-
ditionally used in open addressing tables, have the problem of
accumulating and making search probes ever longer. Instead,
we used a scheme used by the recent non-concurrent F14 hash
table [29, 36]. Each entry maintains an overflow count, that is
incremented whenever an insert probe finds the entry already
occupied. When removing a record reference at the end of a
merge epoch, we atomically decrement the overflow counts
on its probe path, before marking it as free. Similarly, when
inserting a record reference, we atomically increment the
overflow counts on its probe path. An entry whose overflow
count is zero is a search terminator (§4.2.2).

5.2 Lock-Free Reads

To avoid reader contention on the same indexlet or phantom-
let entries, ScaleDB provides LockFreeRdHashTbl (based on
seqlocks [3]). To implement these, we add a version number to
the per-entry spinlocks in the indexlet or phantomlet hash ta-
bles. Writers (doing inserts, updates or deletes) increment the
version number after acquiring the spinlock but before any
writes. At spinlock release, the version number is incremented
again. Readers do not acquire the spinlocks but instead read
the version number, before and after they perform the read. If
the version number changed during the read or it is initially
odd in value, then there was interference from a concurrent
writer and the reader retries.

The limitation of this design is that it cannot be used if
the data being read has internal pointers; otherwise, writers
could invalidate pointers that a reader had already followed.
To solve this, we can use Read-Copy-Update (RCU) [24] for im-
plementing LockFreeRdHashTbl [73]. However, RCU can add
significant complexity to the design; e.g., it requires garbage
collection of previous versions of the data, after ensuring that
no readers are actively reading it.

Our current prototype does not implement RCU. Instead,
we only use LockFreeRdHashTbl for use-cases where the data
does not have internal pointers; e.g., during the ACC valida-
tion phase, we use it to atomically search phantomlets, thus
avoiding mechanism coordination between threads search-
ing for phantom indicators for the same leaf node version of
a range index. We also use LockFreeRdHashTbl to validate
point reads in indexlets with fixed-length keys. If the data has
internal pointers, we instead use LockRUDHashTbl (§4.2.2).

5.3 Concurrent Range Index

Our range index implementation is a B+ tree with optimistic
latch coupling (OLC) [60], used in a recent study [77] that com-
pared the scalability of state-of-the-art range indexes. In the
OLC tree, reads do not acquire the per-node spinlocks when
traversing the tree. Instead, they validate a per-node version
number by reading it before and after reading the node’s con-
tents. If the two versions are not the same, they restart their
traversal. Writers intially traverse like readers, but restart and
acquire spinlocks along the path if they detect interference
from another writer or if nodes need modification.

5.4 System-wide Synchronized Clock

For scalable durability, ScaleDB assigns timestamps to trans-
actions derived from a system-wide synchronized clock. Syn-
chronized hardware clocks are available on modern multi-
core processors, such as the timestamp counter (TSC) on
recent Intel x86 processors, which runs at a constant rate.
Intel has indicated [52] that “this is the architectural behavior
moving forward” and that “the OS may use invariant TSC for
wall clock timer service”. As a result Linux uses the TSC as the
clock source on x86 across multiple CPU sockets, after run-
ning boot-time tests to ensure synchronization [8, 9]. Recent
work [34, 35] on multi-core filesystems has used it for scalable
ordering across cores. Finally, virtual machines also provide
synchronized virtual TSCs by either using the underlying
hardware (fast) or emulating it if not synchronized (slow) and
even across migrations [20, 26].

On architectures where a system-wide TSC is not available,
itis possible to use a dedicated timing thread [71] for handing
out timestamps. This approach requires a core dedicated to
the timing thread, which continuously increments a local
variable and then stores the value to a global time variable.
A thread requiring a global timestamp simply reads the time
variable. On the Intel Skylake architecuture, such a timing
thread increments the local variable every 0.87 cycles which
is actually 15% faster than the TSC [71], but requires a core.

6 Evaluation

Our evaluation aims to understand how ScaleDB performs in
terms of throughput scalability of committed transactions on
various workloads, including YCSB and TPC-C, and how the
various ideas in the design of ScaleDB contribute to perfor-
mance. Our comparison baselines are Peloton, upon which
ScaleDB is built, and Cicada.
Our evaluation answers the following questions:
1. What is the query scalability of ScaleDB when compared
to Peloton (§6.1)? We use YCSB to answer this question.
2. How does ScaleDB scalability compare to Cicada when
guaranteeing serializability for transactions (§6.2)? Is the
transaction abort rate affected? We evaluate TPC-C.

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 371

3. Isthe ScaleDB asynchronous architecture a scalable design
(§6.3)? We evaluate the scalability of indexlets (phantom-
lets) and system-wide timestamps given that these mecha-
nisms are necessary for a scalable, asynchronous database.

Testbed. All machines in the evaluation have 2x18-core In-
tel Xeon Gold 6154 CPUs with 36 cores. 192GB of memory is
divided across two NUMA nodes. Each machine has a Mel-
lanox ConnectX-5 NIC, operating at 100Gb/s. For networked
benchmarks, we run a single database server and 4 client ma-
chines. Each client machine runs as many processes of the
OLTP benchmark suite [13] as needed to saturate the database
server. Accordingly, all experiments report peak throughput.

6.1 Asynchronous Index Update

We evaluate ScaleDB’s scalability of asynchronous updates to
a single range index and compare to Peloton. For this purpose,
we use the Yahoo! Cloud Serving Benchmark (YCSB) [40]
read-insert workload. To generate enough load, we access the
database from 4 networked YCSB benchmark client machines.
The YCSB benchmark defines a single table with an integer
primary key and 10 string columns, each of size 100 bytes.
Peloton uses the lock-free Bw-Tree [77] as the underlying
primary range index on the integer key.

All experiments use 36 server threads, with each thread
pinned to a separate core. We show scalability by increasing
the number of client terminals sending operations to the data-
base server. For ScaleDB, we set the maximum merge epoch
duration to 100 ms and the maximum batch size per thread to
1,000 entries. Prior to running each experiment, we load the
table with 1 million records. We use a Zipfian distribution for
reads with 6 =0.99 to simulate a skewed workload. For inserts,
each client thread adds new records sequentially within its
own interval of the primary key space, starting after the al-
ready inserted 1 million records, to avoid uniqueness conflicts.

Mechanism contention. Figure 7a shows terminal scala-
bility for two points of read-insert intensity. The read-insert
workload has only mechanism contention—reads and inserts
are to disjoint keys. For 95% reads, both ScaleDB and Peloton
scale with similar performance until all server cores are sat-
urated. This is not surprising. Peloton’s range index scales
well when a workload is read-intensive. For a write-intensive
workload with 50% inserts, Peloton’s throughput collapses,
while ScaleDB maintains 9.5X Peloton’s throughput at scale.

To detail this effect, we examine the sensitivity of both sys-
tems to increasing write intensity by varying the fraction of
inserts in the workload, fixing the number of terminals to 160.
Figure 7b shows that Peloton’s throughput quickly collapses
with increasing write intensity (knee-point at 20% inserts),
while ScaleDB’s throughput gradually declines. ScaleDB loses
46% of its peak throughput when the workload is write-only.

6.2 Serializability

We now evaluate asynchronous scalability with serializable
transactions on the TPC-C benchmark, which has multiple
tables and several primary and secondary range indexes. We
compare with the Cicada [62] database. Cicada’s prototype
does not have a network layer and it uses a TPC-C imple-
mentation linked with the database binary, calling directly
into the Cicada function call API as opposed to sending SQL
calls across the network. For a fairer comparison, we do the
same for ScaleDB. Cicada’s prototype also pre-allocates all
of its memory using huge pages. Recent work from Huang
et al. [51] has recommended avoiding this strategy since it
“changes system dynamics significantly—for instance, pre-
allocated indexes never change size”. Further, Huang et al.
show that Cicada, with pre-allocation, experiences a perfor-
mance collapse at high core counts due to memory exhaus-
tion, which we observed as well. Therefore, we modify Cicada
to instead use jemalloc [6], which is what ScaleDB uses for
memory allocation. Finally, Cicada simplifies multi-column
keys by reducing them to 64-bit integers (using assumptions
about the maximum range of each column). Thus, all key
comparisons in Cicada are between single 64-bit integers,
while ScaleDB stores and compares multi-column keys (with
possibly varying column types). Hence, the baseline perfor-
mance in this evaluation is biased against ScaleDB. We report
self-normalized scalability, in addition to raw transactional
throughput (Figure 8), for a more complete picture.

TPC-C does not run range scans on the WAREHOUSE, DIS-
TRICT and ITEM tables. Cicada uses hash indexes for these
tables and we do the same for ScaleDB. For the other tables,
ScaleDB’s maximum per-thread batch sizes are calculated
using the method outlined in §4.1. The New-Order and De-
livery transactions exert a very small W-to-RS latency on the
NEW-ORDER table, requiring this table’s maximum batch
size to be set to 0 (i.e., synchronous merging into the range
index). The remaining tables have a batch size of 2,048.

Figure 8 shows the TPC-C evaluation. The setup for these
experiments is the same as that of Figure 2. ScaleDB does
not have a partitioned index configuration, so all results for
ScaleDB use shared indexes. On the canonical TPC-C bench-
mark (Figure 8a), ScaleDB scales 22.3X on 36 cores (relative to
its single core throughput), which is significantly better than
Cicada’s scalability (with shared indexes) of 6.4X. At scale,
ScaleDB’s raw throughput is 1.8x higher than Cicada.

Partitioned indexes show the upper bound for Cicada’s
scalability. ScaleDB, with shared indexes, achieves better self-
normalized scalability than Cicada with partitioned indexes
(Cicada scales only 20X over 36 cores). At scale, ScaleDB’s raw
throughput is 60% of Cicada. Of course, Cicada’s partitioned
indexes do not generalize to skewed workloads.

We also evaluate a workload (NewOrd-Deliv, Figure 8b)
consisting of TPC-C transactions New-Order and Delivery in
equal proportions. On this more index-contended benchmark,

372 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

500 600

450
$ 400 o 500
a a
g 350 g 400
2300 a
o o
%5 250 %5 300
1%) v
'?u 200 g
3 150 & 200
2 2
i 100 " 100
50
0 0
0 40 80 120 160 0 20 40 60 80 100
Number of Client Terminals Write Percentage
©-Scaledb-95-5 A-Peloton-95-5 H&Scaledb-50-50 %-Peloton-50-50 EScaleDB > Peloton
(a) Throughput. (b) Write sensitivity.
Figure 7. YCSB read-insert workload. 95-5 is 95% reads and 5% inserts. 50-50 is 50% reads and 50% inserts.
2500 2500
2000 2000
2 2
£ 2
6 1500 § 1500
k4] k5]
2 2
c c
© 1000 © 1000
= = o 8
B8
500 500 o -8
o R T
o O 0
1 2 4 8 12 16 20 24 28 32 36 0 4 8 12 16 20 24 28 32 36
Number of Threads Number of Threads
BScaleDB ©Cicada (Partitioned Idxes) © Cicada (Shared Idxes) B ScaleDB A-Cicada(Partitioned Idxes) 4 Cicada(Shared Idxes)
(a) TPC-C. (b) NewOrd-Deliv.

Figure 8. ScaleDB vs Cicada goodput scalability on the TPC-C benchmark. Goodput counts only committed transactions.

4

Percent Txns Aborted
N

Percent Txns Aborted
N

15 15
1 1
0.5 0.5
0 0
0 4 8 12 16 20 24 28 32 36 o 4 8 12 16 20 24 28 32 36

Number of Threads Number of Threads

BO0verall ©Delivery ©-StockLevel BoOverall SDelivery #New-Order

(a) TPC-C. (b) NewOrd-Deliv.

Figure 9. ScaleDB abort rate.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 373

<~
=) o N b o
o o © O o

B
=)

Millions of operations per second
N [+
o o

o

0 4 8 12 16 20 24 28 32 36
Number of threads

©Indexlet Libcuckoo BWTree

(a) Indexlet.

4 285006000009

0 4 8 12 16 20 24 28 32 36
Number of Threads

-©-atomic_inc rdtscp timing_thread

(b) System-wide timestamps.

Figure 10. ScaleDB mechanism scalability.

ScaleDB maintains its scalability, while Cicada’s scalability
is severely impacted. ScaleDB scales 24X over 36 cores, com-
pared to only 1.6X for Cicada with shared indexes. ScaleDB’s
throughput is 4.3% higher than Cicada. With partitioned in-
dexes, Cicada scales 15.5X, still worse than ScaleDB using
shared indexes. At scale, ScaleDB (with shared indexes) pro-
vides 48% of Cicada’s throughput (with partitioned indexes).

Given ScaleDB’s asynchronous design and the fact that
transactions can do stale reads from range indexes in between
batch merges, an important concern is how the abort rate
behaves with an increasing number of threads. Figures 9a
and 9b show this evaluation. On the canonical TPC-C bench-
mark, only the Delivery and StockLevel transactions have a
non-negligible abort rate. The Delivery abort rate stabilizes
at 3.5% around 20 cores (for both workloads), which implies
that ScaleDB continues scaling even beyond 36 cores. The
Stock-Level abort rate stays under 1%, even for 36 cores.

We also evaluated sensitivity of the abort rate to batch size,
but found that our workloads were not very sensitive to even
significant variations around the initial batch size—calculated
according to the expected write rate for the corresponding
table (§4.1). Accordingly, we omit those results for brevity.

6.3 ScaleDB Mechanisms

Indexlets. We evaluate the scalability of indexlets against
libcuckoo [7], an optimized concurrent hash table, and the
BwTree [61, 77], a recent, lock-free range index structure.
This evaluation is performed on a microbenchmark (included
with libcuckoo) with a 50% read and 50% insert workload
consisting of 64-bit integer keys and values. As Figure 10a
shows, indexlets achieve nearly 5xlibcuckoo and 25xBwTree
throughput at 36 cores. Open addressing in indexlets provides
better scalability than cuckoo hashing and the flat structure
of hash tables scales better than tree indexes.

Memory Overhead. Indexlets have low memory overhead.
Each indexlet entry only contains the primary key, a refer-
ence to the actual database row, and a small amount of meta-
data (e.g., a spinlock). For primary keys composed of integer
columns, such as those in TPC-C tables, an indexlet entry can
fit within a cache line (i.e. 64 bytes). As a result, the maximum
size of an indexlet in our benchmarks was ~60MB, even for
tables (e.g. the TPC-C Orderline table) which absorbed mil-
lions of record inserts per second at peak. For phantomlets,
the memory overhead is even more modest, as their entry
count is sized according to the expected number of leaf index
nodes used for inserts per epoch. Accordingly, the maximum
size of phantomlets in our benchmarks was lower than 1MB.

System-wide timestamps. We evaluate the TSC and tim-
ing thread approach (§5) and compare with an atomic incre-
ment as a global timestamp. As Figure 10b shows, both timing
thread and TSC approaches scale linearly to 36 cores, while
the atomic increment does not scale beyond 4 cores.

7 Conclusion

ScaleDB is an asynchronous in-memory database that pro-
vides scalability and serializability for ACID transactions.
ScaleDB asynchronously updates range indexes by temporar-
ily holding writes in indexlets that are merged periodically
into range indexes. ScaleDB uses asynchronous consistency
control (ACC) to provide transaction serializability. ACC ex-
tends OCC with asynchronous phantom detection via phan-
tomlets and atomic transcation commit using locks in in-
dexlets, rather than range indexes. For durability, ScaleDB
uses system-wide time stamp counters for scalable redo log-
ging. ScaleDB achieves 9.5X better query throughput than
Peloton on the YCSB benchmark and 1.8X better transaction
throughput than Cicada on the TPC-C benchmark.

Acknowledgments. We thank the anonymous reviewers
and our shepherd, Murat Demirbas, for their feedback. This
work was supported by NSF grant 2227066.

374 17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

References
[1

—

Azure SQL database: Managed, intelligent SQL in the cloud.

https://azure.microsoft.com/en-us/services/sql-database/.

[2] Cuckoo Hashing. https://web.stanford.edu/class/archive/cs/cs166/
¢s166.1146/lectures/13/Small13.pdf.

[3] Driver porting: mutual exclusion with seqlocks. https:

//lwn.net/Articles/22818.

[4] Google Cloud Spanner. https://cloud.google.com/spanner/.

[5] HyPer - A Hybrid OLTP&OLAP High Performance DBMS.

https://hyper-db.de/.

jemalloc. https://jemalloc.net/.

libcuckoo. https://github.com/efficient/libcuckoo.

[8] Linux TSC Cross Socket Reliability. https://github.com/torvalds/linux/
blob/c2131f7e73c9€9365613e323d65c7b9e5b910f56/arch/x86/kernel/
cpu/intel.c#L249.

[9] Linux TSC Synchronization. https://github.com/torvalds/linux/blob/
master/arch/x86/kernel/tsc_sync.c.

[10] MemSQL. https://www.memsql.com/.

[11] MyRocks: A space- and write-optimized MySQL database.
https://engineering.fb.com/core-data/myrocks-a-space-and-
write-optimized-mysql-database/.

[12] MySQL 8.0 Reference Manual: Clustered and Secondary Indexes.
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html.

[13] OLTP-Bench. https://github.com/oltpbenchmark/oltpbench.

[14] Resizing Hash Tables. https://courses.csail.mit.edu/6.006/spring11/
rec/rec07.pdf.

[15] SAP HANA. https://www.sap.com/products/hana.html.

[16] The Forrester Wave™: In-Memory Databases, Q1 2017.
http://www.oracle.com/us/corporate/analystreports/forrester-
imdb-wave-2017-3616348.pdf.

[17] The Infrastructure Behind Twitter: Scale. https://blog.twitter.com/
engineering/en_us/topics/infrastructure/2017/the-infrastructure-
behind-twitter-scale.html.

[18] The Peloton self-driving SQL database management system.
https://github.com/cmu-db/peloton.

[19] Time-series data: Why (and how) to use a relational database instead of
NoSQL. https://www.timescale.com/blog/time-series-data-why-and-
how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/.

[20] Timekeeping in VMware Virtual Machines. https://www.vmware.
com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
Timekeeping-In-VirtualMachines.pdf.

[21] TimesTen: Fastest OLTP database, ultra high availability, elastic
scalability. https://www.oracle.com/database/technologies/related/
timesten.html.

[22] TPC-C Benchmark. http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf.

[23] VoltDB. https://www.voltdb.com/.

[24] What is RCU, Fundamentally? https://lwn.net/Articles/262464/.

[25] Why Uber Engineering Switched from Postgres to MySQL.
https://www.uber.com/blog/postgres-to-mysql-migration/.

[26] Xen TSC (time stamp counter) and timekeeping discussion.
http://xenbits.xen.org/docs/4.13-testing/man/xen-tscmode.7.html.

[27] Firas Abuzaid, Peter Bailis, Jialin Ding, Edward Gan, Samuel Madden,
Deepak Narayanan, Kexin Rong, and Sahaana Suri. Macrobase:
Prioritizing attention in fast data. =~ ACM Trans. Database Syst.,
43(4):15:1-15:45, December 2018.

[28] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions. PhD thesis, MIT, 1999.

[29] O. Amble and D. E. Knuth. Ordered hash tables. The Computer Journal,

17(2):135-142, 01 1974.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. In

Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint

International Conference on Measurement and Modeling of Computer

— =
~N O
—

(30

[

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Systems, SSIGMETRICS °12, pages 5364, 2012.

David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dick-
inson, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi,
Eugene Kogan, Alexander Lloyd, Sergey Melnik, Rajesh Rao, David Shue,
Christopher Taylor, Marcel van der Holst, and Dale Woodford. Spanner:
Becoming a SQL system. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 331-343, 2017.
Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. A critique of ANSI SQL isolation levels. SIGMOD
Rec., 24(2):1-10, May 1995.

Philip A. Bernstein and Nathan Goodman. Multiversion concur-
rency control—theory and algorithms. ACM Trans. Database Syst.,
8(4):465-483, December 1983.

Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek,
and Nickolai Zeldovich. Scaling a file system to many cores using
an operation log. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP °17, pages 69-86, 2017.

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. OpLog: a library for scaling update-heavy data structures.
Technical Report MIT-CSAIL-TR-2014-019, MIT, September 2014.
Nathan Bronson and Xiao Shi. Open-sourcing F14 for faster, more
memory-efficient hash tables. https://engineering.fb.com/developer-
tools/f14/.

Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A
practical concurrent binary search tree. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 257-268, 2010.

Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. Cache-
conscious concurrency control of main-memory indexes on shared-
memory multiprocessor systems. In Proceedings of the 27th International
Conference on Very Large Data Bases, VLDB 01, pages 181-190, 2001.
Biswapesh Chattopadhyay, Sagar Mittal, Roee Ebenstein, Nikita
Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony Xu, Luis Perez,
Farhad Shahmohammadi, Tran Bui, Neil McKay, Priyam Dutta, Selcuk
Aya, Vera Lychagina, Brett Elliott, Weiran Liu, Ott Tinn, Andrew
Mccormick, Aniket Mokashi, and David Lomax. Procella: unifying
serving and analytical data at YouTube. Proceedings of the VLDB
Endowment, 12:2022-2034, August 2019.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
10, pages 143-154, 2010.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, chapter 11. The MIT Press, 3rd
edition, 2009.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton:
SQL Server’s memory-optimized OLTP engine. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1243-1254, 2013.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudre-Mauroux. OLTP-Bench: An extensible testbed for benchmarking
relational databases. Proc. VLDB Endow., 7(4):277-288, December 2013.
Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion
concurrency control. Proc. VLDB Endow., 8(11):1190-1201, July 2015.
Jose M. Faleiro and Daniel J. Abadi. Latch-free synchronization in
database systems: Silver bullet or fool’s gold? In 8th Biennial Conference
on Innovative Data Systems Research, CIDR ’17, pages 9-21, 2017.
Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip
lists. In Proceedings of the 23rd Annual ACM Symposium on Principles
of Distributed Computing, PODC *04, pages 50-59, 2004.

Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,
Boris Grot, and Vijay Nagarajan. Scale-out ccNUMA: Exploiting skew
with strongly consistent caching. In Proceedings of the 13th EuroSys

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 375

https://azure.microsoft.com/en-us/services/sql-database/
https://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Small13.pdf
https://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Small13.pdf
https://lwn.net/Articles/22818
https://lwn.net/Articles/22818
https://cloud.google.com/spanner/
https://hyper-db.de/
https://jemalloc.net/
https://github.com/efficient/libcuckoo
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc_sync.c
https://www.memsql.com/
https://engineering.fb.com/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://engineering.fb.com/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
https://github.com/oltpbenchmark/oltpbench
https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
https://www.sap.com/products/hana.html
http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf
http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://github.com/cmu-db/peloton
https://www.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://www.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.oracle.com/database/technologies/related/timesten.html
https://www.oracle.com/database/technologies/related/timesten.html
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.voltdb.com/
https://lwn.net/Articles/262464/
https://www.uber.com/blog/postgres-to-mysql-migration/
http://xenbits.xen.org/docs/4.13-testing/man/xen-tscmode.7.html
https://engineering.fb.com/developer-tools/f14/
https://engineering.fb.com/developer-tools/f14/

[48

=

(49

[

[51

—

[52

—

[53

[t

[54

flan)

(55

—

(56]

(57]

(58]

[59

[

(60

—

(61

—

(62

—

(63

-

(64

=

Conference, EuroSys 18, 2018.

Goetz Graefe. A survey of B-tree locking techniques. ACM Trans.
Database Syst., 35(3):16:1-16:26, July 2010.

Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple
optimistic skiplist algorithm. In Proceedings of the 14th International
Conference on Structural Information and Communication Complexity,
SIROCCO’07, pages 124-138, 2007.

QiHuang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A. Freedman,
Ken Birman, and Robbert van Renesse. Characterizing load imbalance
in real-world networked caches. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, HotNets-XIII, pages 1-7, 2014.
Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba
Shrira. Opportunities for Optimism in Contended Main-Memory Mul-
ticore Transactions. Proc. VLDB Endow., 13(5):629-642, January 2020.
Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, volume 3B, chapter 17, pages 17-41. November 2018.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance
measurements of the Intel Optane DC persistent memory module.
http://arxiv.org/abs/1903.05714, 2019.

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-
store. Proceedings of the VLDB Endowment, 1(2):1496—1499, August 2008.
Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis
Pandis. ERMIA: Fast memory-optimized database system for hetero-
geneous workloads. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD 16, pages 1675-1687, 2016.
Hideaki Kimura. FOEDUS: OLTP engine for a thousand cores and
NVRAM. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 691-706, 2015.
H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Trans. Database Syst., 6(2):213-226, June 1981.
Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,
Jignesh M. Patel, and Mike Zwilling. High-performance concurrency
control mechanisms for main-memory databases. Proc. VLDB Endow.,
5(4):298-309, December 2011.

Philip L. Lehman and S. Bing Yao. Efficient locking for concurrent
operations on B-trees. ACM Trans. Database Syst., 6(4):650-670,
December 1981.

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
The ART of practical synchronization. In Proceedings of the 12th
International Workshop on Data Management on New Hardware, DaMoN
’16, pages 3:1-3:8, 2016.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The
Bw-Tree: A B-tree for new hardware platforms. In Proceedings of
the 2013 IEEE International Conference on Data Engineering, ICDE *13,
pages 302-313, 2013.

Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions. In Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD °17, pages 21-35, 2017.

Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
7th ACM European Conference on Computer Systems, EuroSys ’12, pages
183-196, 2012.

Syed Akbar Mehdi. Scalability through Asynchrony in Transactional
Storage Systems. PhD thesis, The University of Texas at Austin, 2022.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Appendix 2.

C. Mohan and Frank Levine. ARIES/IM: An efficient and high
concurrency index management method using write-ahead logging.
In Proceedings of the 1992 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’92, pages 371-380, 1992.
Shuai Mu, Sebastian Angel, and Dennis Shasha. Deferred runtime

pipelining for contentious multicore software transactions. In
Proceedings of the 14th EuroSys Conference 2019, EuroSys ’19, 2019.
Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. Fast
serializable multi-version concurrency control for main-memory
database systems. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 677-689, 2015.
Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. An analysis of load imbalance in scale-out data serving.
SIGMETRICS Perform. Eval. Rev., 44(1):367-368, June 2016.

Andrew Pavlo. What are we doing with our lives? Nobody cares about
our concurrency control research. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD ’17, page 3, 2017.
Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware
automatic database partitioning in shared-nothing, parallel OLTP
systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 61-72, 2012.
Michael Schwarz, Samuel Weiser, Daniel Gruss, Clementine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks, 2017. https://arxiv.org/abs/1702.08719.

Debendra Das Sharma. Compute Express Link®: An open industry-
standard interconnect enabling heterogeneous data-centric computing.
In 2022 IEEE Symposium on High-Performance Interconnects, HOTI ’22,
pages 5-12, 2022.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 18-32, 2013.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey,
Kamal Gupta, Murali Brahmadesam, Raman Mittal, Sailesh Krish-
namurthy, Sandor Maurice, Tengiz Kharatishvilli, and Xiaofeng Bao.
Amazon Aurora: On avoiding distributed consensus for I/Os, commits,
and membership changes. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages 789-796, 2018.
Stavros Volos, Djordje Jevdjic, Babak Falsafi, and Boris Grot. Fat caches
for scale-out servers. IEEE Micro, 37(2):90-103, March 2017.

Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang
Li. Scaling multicore databases via constrained parallel execution. In
Proceedings of the 2016 International Conference on Management of Data,
SIGMOD 16, pages 1643-1658, 2016.

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. Building a Bw-Tree
takes more than just buzz words. In Proceedings of the 2018 ACM
International Conference on Management of Data, SIGMOD °18, pages
473-488, 2018.

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas,
and Michael Stonebraker. Staring into the abyss: An evaluation of
concurrency control with one thousand cores. Proc. VLDB Endow.,
8(3):209-220, November 2014.

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas.
TicToc: Time traveling optimistic concurrency control. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD
'16, pages 1629-1642, 2016.

376

17th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

http://arxiv.org/abs/1903.05714
https://arxiv.org/abs/1702.08719

	Abstract
	1 Introduction
	2 Background
	2.1 Prior Work

	3 The Case for ScaleDB
	3.1 Database Scalability Analysis
	3.2 When Can Range Indexes Scale?

	4 ScaleDB Design
	4.1 Asynchronous Range Index Updates
	4.2 Asynchronous Concurrency Control
	4.3 Durability
	4.4 Correctness

	5 Implementation
	5.1 Indexlet and Phantomlet Hash Table
	5.2 Lock-Free Reads
	5.3 Concurrent Range Index
	5.4 System-wide Synchronized Clock

	6 Evaluation
	6.1 Asynchronous Index Update
	6.2 Serializability
	6.3 ScaleDB Mechanisms

	7 Conclusion
	References

