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Abstract
Many distributed systems, e.g., state machine replication and
distributed databases, rely on establishing a consistent order
of operations on groups of nodes in the system. Tradition-
ally, this ordering has been established by application-level
protocols like Paxos or two-phase locking. Recent work has
shown significant performance improvements are attainable
by making ordering a network service, but current network se-
quencing implementations require routing all requests through
a single sequencer – leading to scalability, fault tolerance, and
load balancing limitations.

Our work, Hydra, overcomes these limitations by using
a distributed set of network sequencers to provide network
ordering. Hydra leverages loosely synchronized clocks on net-
work sequencers to establish message ordering across them,
per-sequencer sequence numbers to detect message drops,
and periodic timestamp messages to enforce progress when
some sequencers are idle. To demonstrate the benefit of Hy-
dra, we co-designed a state machine replication protocol and
a distributed transactional system using the Hydra network
primitive. Compared to serialization-based network ordering
systems, Hydra shows equivalent performance improvement
over traditional approaches in both applications, but with sig-
nificantly higher scalability, shorter sequencer failover time,
and better network-level load balancing.

1 Introduction
Replication is ubiquitous in data center applications. Consen-
sus protocols like Paxos, Viewstamped Replication, and Raft
are used to maintain multiple copies of data, providing the illu-
sion of a single correct service that remains available even as
individual replicas fail and recover. However, these protocols
impose substantial latency and throughput overhead.

A recent line of work demonstrated that in-network pro-
cessing can alleviate this cost [42, 43, 56]. This network se-
quencing approach routes requests through a sequencer – im-
plemented in a programmable switch or middlebox – which
assigns a monotonically increasing sequence number to each
request. By pre-establishing a total order of all requests, they
enable lighter weight consensus protocols, ultimately yield-
ing impressive performance gains: Network-Ordered Paxos
achieves throughput within 2% and latency within 10% of an
unreplicated, non-fault-tolerant system [43].

However, employing this approach in practice is not easy.
Fundamentally, the difficulty stems from the fact that network

sequencing requires serialization: all traffic for a replicated
service must pass through a single sequencer. This poses three
major challenges in production networks. First, the single se-
quencer must process all request traffic, posing a scalability
bottleneck. Second, it imposes a new routing requirement for
specific application traffic, which network operators are loath
to accept. Restricting path diversity interferes with existing
policies, carefully engineered for load balancing and fault tol-
erance. Finally, it introduces an undesirable coupling between
network and application-level recovery. Replacing a failed or
unreachable sequencer requires coordinating a simultaneous
update to the network routes and recovery of the sequencer
state (via a consensus protocol). This adds deployment com-
plexity and increases system downtime during the recovery
process. All three are serious barriers to adoption, based on
our experiences with large-scale production data centers.

This paper asks whether network sequencing can be
achieved without serialization. We answer that question in the
affirmative by presenting the design of Hydra,1 a new protocol
for network sequencing that allows packets to be sequenced by
multiple active sequencers. Hydra’s sequencers themselves
run a lightweight coordination protocol, in which each se-
quencer independently assigns sequence numbers to requests
that can be merged to establish a total order of operations.
Specifically, Hydra leverages a combination of per-sequencer
sequence numbers and loosely synchronized physical clocks
across sequencers to assign a global ordering while still effi-
ciently detecting dropped messages.

Hydra is a practical protocol; we have built both a software
implementation that runs on end hosts and one in P4 [11] that
runs on an Intel Tofino programmable switch; the latter uses
only a small fraction of switch resources, demonstrating its
practicality for modern network devices. Hydra’s sequencing
functionality allows it to run the existing NOPaxos [43] and
Eris [42] replication and transaction processing protocols with
minimal modification, while making them more resilient to
sequencer faults with marginal performance cost.

Our evaluation results demonstrate that Hydra achieves a
378% increase in throughput and 42% reduction in latency
compared to an atomic multicast baseline, while scaling to
high numbers of receivers, multicast groups, and sequencers.
Comparing to systems that use a network serialization ap-
proach, Hydra significantly improves network-level load bal-

1Hydra is named after the Lernean Hydra of Greek mythology, a multi-
headed serpent that could regrow a new head if one was chopped off [31].



ancing and reduces system downtime by 5×. Moreover, Hy-
dra achieves these benefits without sacrificing performance:
our Hydra-based state machine replication system gets latency
within 5 µs and throughput within 17% of NOPaxos, and our
transactional system attains 47% higher throughput than Eris.

2 Background
Establishing a consistent order of operations is fundamental to
many distributed systems: state machine replication [43,52,53,
61] requires all correct replicas to execute a totally ordered set
of client operations; distributed transactional systems [5, 14,
17,19,26,39] mandate that all shards of the data store process
transactions in a serializable order; distributed caches [50,55]
require consistent updates to ensure coherence.

Traditionally, guaranteeing strong consistency necessitates
running complex application-level distributed protocols which
involve coordination among servers. For instance, many state
machine replication protocols [52, 53, 61] designate a single
leader to assign an order to operations, and require it to com-
municate with replicas before returning a result to the client,
and existing distributed databases execute concurrency con-
trol, atomic commitment, and consensus protocols for each
client transaction. This expensive coordination is at odds with
the demanding throughput, latency, and scalability require-
ments of modern data center applications.

2.1 Request Ordering in the Network

The need for these protocols stems from the fundamental
assumption of a fully asynchronous network which can ar-
bitrarily drop, reorder, or delay messages. A classic line of
work in distributed computing proposes stronger communica-
tion primitives to simplify distributed applications, including
virtual synchrony [8,9], atomic broadcast [10,34], and atomic
multicast [28]. These provide broadcast or multicast opera-
tions that ensure all correct receivers will deliver the same set
of messages in the same order. Such guarantees can obviate
the need for consensus protocols – but implementing them is
a problem equivalent to consensus [13], so applications do
not enjoy a performance benefit.

Network ordering without reliability guarantees. A re-
cent line of work [42, 43, 56] proposes a new network model
that balances guarantees and implementation efficiency. This
new model moves the responsibility of consistent message
ordering into the network, but leaves reliable delivery of mes-
sages to application-level protocols. By providing ordering
guarantees in the network, this network/protocol co-design
approach allows faster replication protocols than traditional
designs; by not enforcing reliability, the network model is
simple enough to implement efficiently.

A key mechanism employed by these systems to imple-
ment network ordering is in-network serialization. For in-
stance, Speculative Paxos [56] routes all client requests first
to a designated switch in the network before multicasting to
the replica servers. The single switch serves as a serialization

point and ensures that, with high probability, all replicas re-
ceive client requests in the same order. NOPaxos [43] extends
this serialization approach by using programmable switch
ASICs to provide guarantees of request ordering. The des-
ignated switch stamps a sequence number into each client
request. Receivers then ensure consistent ordering by pro-
cessing requests only in sequence number order. Additionally,
sequence numbers allow replicas to identify dropped mes-
sages (by detecting gaps in the sequence).

Eris [42] further generalizes the sequencing approach to
support requests that are sent to multiple replication groups
(e.g., to implement fault-tolerant distributed transactions). The
sequencer switch maintains a counter for each group, and on
each client request, atomically increments the counter value
for all destination groups. These counter vectors ensure a
consistent ordering of all multi-group operations, while still
allowing receivers to independently detect dropped messages.

2.2 Limitations of In-Network Serialization

Prior work [42, 43, 56] has demonstrated the performance
benefits of the network ordering approach and its applicability
to several classes of distributed systems. However, the in-
network serialization approach employed by existing network
ordering solutions has important limitations.

Scalability bottleneck. A key requirement in the serializa-
tion approach is that all client requests need to go through
a single sequencer device. This device can become a perfor-
mance bottleneck. While in-switch sequencers can sustain a
far higher sequencing rate than the server-based replicas that
actually execute operations, sequencer capacity can still be a
scalability limit for sharded database systems like Eris [42]
where one sequencer serves many replica groups. Moreover, if
the sequencer is implemented on an end host, as can be more
practical for many deployments, poor CPU-based packet pro-
cessing performance is at odds with the horizontal scaling
capability of the system.

Prolonged system downtime. Being a serialization point
of all client requests, a failure in the sequencer will result
in unavailability of the entire distributed system. Sequencer
failover is more complicated than traditional recovery (e.g.,
changing leaders in a Paxos deployment) because it couples
network rerouting with application-level recovery. To resume
operation, the network control plane must first detect the fail-
ure and carry out network-wide routing changes to redirect
client traffic to a new sequencer, and afterwards begin a view
change procedure to ensure system state is consistent; only
then can replicas process requests from the new sequencer.
Rerouting in a large data center network is expensive: previ-
ous studies [38, 42, 43] show that updating forwarding tables
in a single switch alone can take more than 200 ms. Before
this lengthy rerouting procedure is complete, the system will
remain unavailable.



Worsened data center network properties. Data center
networks are carefully engineered to provide high reliability,
performance, and cost efficiency [2, 27, 49]. By adding re-
dundant paths to the network and using protocols like ECMP,
these networks can effectively load balance network traffic,
tolerate link and switch failures, and sustain high bisection
bandwidth. Serializing traffic through a single switch, how-
ever, reduces the number of available paths and can easily
nullify these desirable network properties. For example, it can
lead to link congestion at the sequencer switch.

Incompatible with multi-pipeline switches. Many switch
ASICs scale out processing capacity by using multiple (e.g.,
2–8 [18]) separate pipelines, with few or no shared resources.
Existing sequencing approaches, however, update and atom-
ically read a single copy of the sequence number. This re-
quirement restricts deploying network sequencing logic to
a single switch pipeline [36]. This not only limits the maxi-
mum throughput of the network sequencer to a fraction of the
switch capacity, it complicates cabling and routing because
specific physical ports are bound to each pipeline.

3 Sequencing with Multiple Sequencers
Hydra allows multiple active sequencers to work concurrently,
preventing a single sequencer from becoming a scalability
bottleneck or a single point of failure. This allows Hydra to
support new deployment models for network sequencers.

3.1 Deployment Options

Hydra supports a spectrum of deployment models.

Root switches. Prior work envisioned using programmable
switches at the root of a tree topology as sequencers, leverag-
ing their centrality in the data center network. Such switches
can handle high request load, making scalability beyond a
single switch’s capacity a less urgent concern, but they do so
through the use of multiple ASICs and forwarding pipelines
which prior sequencer designs do not support. Hydra can also
improve availability by decoupling sequencer failover from
reroute latency of the underlying network (§7.5). In addition,
using multiple Hydra sequencers rather than routing all se-
quenced traffic through one switch provides path diversity,
which allows better link-level load balancing and resilience
to link failures (§7.4).

ToR switches. Many existing data center architectures
cannot deploy programmable switches at the network core:
they use large, multi-ASIC chassis switches at the root
layer [15, 27], and programmable switches are not available
in this configuration. For example, Tofino-based switches are
only available in smaller 32/64-port configurations. For many
scenarios, using top-of-rack switches as sequencers is thus a
more practical alternative. In such deployments, scalability
and fault tolerance are acute concerns: ToR switches fail more
commonly [25] and frequently experience congestion on their

uplinks. Hydra can avoid both problems by employing multi-
ple sequencers (§7.4).

Sequencer appliances. In our experience, incrementally
deploying new functionality in existing switches, ToR or oth-
erwise, can be a challenge: coordinating updates with existing
switch functionality and validating the correctness of a cus-
tom data plane are both obstacles. An appealing alternate
approach is to employ a cluster of switches as dedicated “se-
quencer appliances” attached to the network as edge devices
rather than being part of the fabric [57], as proposed for other
network function accelerators [37, 64]. Again, fault tolerance
of individual sequencers and congestion on their network
links (which may not exploit the full bandwidth of the switch)
are major concerns, which Hydra can alleviate.

End hosts. A final approach eschews specialized hardware
in favor of using end hosts as sequencers [43]. This offers
obvious deployment benefits and may be the only practical
approach for many environments. However, both scalability
and fault tolerance are critical here: Eris’s end-host sequencer
barely handles the load of a 15-shard database [42], making
it an option only for smaller deployments. Hydra’s multiple-
sequencer approach allows it to go beyond this limit, provid-
ing a practical, scalable approach for environments where
specialized hardware is unavailable (§7.1.3).

3.2 Addressing and Routing

Regardless of deployment options, Hydra integrates easily
with existing data center routing structures. Each Hydra de-
ployment has a unique IP address. Each sequencer in the de-
ployment advertises its IP address via BGP anycast, allowing
routes to be dynamically updated as sequencers join or leave
the deployment. Messages are routed to individual sequencers
using traditional shortest-path routing and load balancing tech-
niques, e.g., ECMP. Alternatively, in an SDN-oriented design
with a centralized controller, the network controller can install
appropriate anycast routes for the group of sequencers.

Apart from these routing changes, Hydra does not require
any changes to any other elements in the network besides the
sequencers themselves. This is a key design constraint, and
one that differentiates Hydra from other ordering approaches
like 1Pipe [41], which exchanges timestamps between every
switch, as well as complementary techniques like RDMA,
which requires complex in-network flow control [29].

4 Hydra: Serialization-Free Network Ordering
4.1 High-Level Abstraction

The core abstraction provided by Hydra is a group commu-
nication protocol. A Hydra deployment consists of receiver
groups, and each group contains one or more receivers. Hydra
offers a groupcast primitive, where a sender specifies one or
multiple groups as the destination, and the message is mul-
ticast to the receivers in the destination groups. The Hydra
groupcast primitive provides the following properties to the



participants:
• Partial Ordering. Hydra groupcast messages are partially

ordered (the partial order relation is denoted as ≺) – all
groupcast messages with overlapping destination groups
are comparable. If groupcast message m1 is ordered before
m2 (m1 ≺m2) and a receiver receives both m1 and m2, then
every receiver delivers m1 before m2.

• Unreliable Delivery. Hydra only offers best effort mes-
sage delivery. A groupcast message is not guaranteed to be
delivered to any of its recipients.

• Drop Detection. If a groupcast message is not delivered
to all its recipients, the primitive will notify the remaining
receivers by delivering a DROP-NOTIFICATION. More for-
mally, let R be the set of receiver groups for message m,
then either one of the following two conditions holds: all
receiver groups in R deliver m or a DROP-NOTIFICATION
for m, or none of the receiver groups in R delivers m or a
DROP-NOTIFICATION for m.

These are the same guarantees provided by the network ab-
stractions in NOPaxos and Eris [42, 43]. However, critically,
Hydra allows scalability, fast failure recovery, and load bal-
ancing across sequencers, where previous designs fell short.

4.2 Prior Approach: Centralized Sequencer

A recent line of work [6, 7, 42, 43, 63] proposed to use ded-
icated devices in the network – a programmable switch, a
network processor, or an end-host server – as a centralized se-
quencer to establish message ordering. In particular, Eris [42]
builds a multi-sequenced groupcast primitive that provides
the same set of guarantees as we specified in §4.1.

To implement multi-sequenced groupcast, a centralized se-
quencer maintains a sequence number for each group in the
system. Senders of a groupcast message encode all recipi-
ent groups in a special packet header, and the packet is first
routed to the sequencer. Upon receiving a groupcast packet,
the sequencer atomically increments the sequence number for
each recipient group, and writes a multi-stamp into the packet.
The multi-stamp contains a set of ⟨group-id, sequence-num⟩,
one for each recipient group. The groupcast packet is then
forwarded to each receiver in each receiver group.

Groupcast receivers track the next sequence number they
expect from the sequencer. When a receiver receives a group-
cast packet, it checks the sequence number that corresponds
to its group ID in the multi-stamp. The receiver rejects the
packet if the sequence number is lower than the expected
value (indicating out-of-order or duplicated messages), and
delivers a DROP-NOTIFICATION to the application if the se-
quence number is higher than expected.

Multi-sequencing provides the three properties of §4.1. By
incrementing sequence numbers atomically, the sequencer en-
sures that if two groupcast messages have overlapping groups,
all receivers in those groups will deliver the two messages
in a consistent order. By maintaining per-group sequence
numbers, any packet loss from the sequencer to a receiver

Algorithm 1 SequencerHandlePacket(pkt)
id: sequencer ID
N: total number of Hydra groups
clk: switch physical clock
seq[N]: sequence number for each group

1: pkt.id← id
2: pkt.c← clk
3: for grp in pkt.grps do
4: pkt.seq[grp]← ++seq[grp]
5: end for
6: Forward pkt

will result in a gap in the received sequence numbers, and
hence a DROP-NOTIFICATION. However, using a centralized
sequencer introduces the limitations previously described.

4.3 Consistent Ordering with Multiple Sequencers

Naïvely applying multi-sequenced groupcast to a multi-
sequencer deployment violates the guarantees listed in §4.1.
Suppose each sequencer independently maintains sequence
numbers for each receiver group, and groupcast messages
can be forwarded to any of the sequencers. Consider two
groupcast messages m1 and m2, both destined to group G1,
but routed through two sequencers. The two sequencers may
write the same sequence number (since they maintain se-
quence numbers independently) for G1 into m1 and m2. When
receivers in G1 receive m1 and m2, they cannot consistently
order the messages while providing drop detection. Break-
ing ordering ties with sequencer ID, for example, would be
consistent across receivers, but a receiver that only received
the “larger” of m1 and m2 would have no way of inferring the
existence of the “smaller.”

To enforce all the guarantees in §4.1 while scaling to mul-
tiple sequencers, we propose a new approach by combin-
ing loosely synchronized clocks across sequencers and per-
sequencer sequence numbers to establish consistent ordering
and detect drops, and using periodic flush messages to ensure
receiver progress.

4.3.1 Physical Clocks for Message Ordering

Hydra uses a combination of sequence numbers and physical
clocks to order messages. Concretely, each Hydra sequencer
possesses a local physical clock that is strictly monotoni-
cally increasing; each sequencer also maintains a sequence
number for each receiver group. Physical clocks are loosely
synchronized across sequencers, but this is not required for
safety; clock skew can only slow progress. Safety of Hydra
only depends on physical clocks not drifting backwards. This
requirement is already common practice: existing clock syn-
chronization protocols such as NTP ensure that clocks can
only move forward [51].

Each Hydra groupcast message is routed to one sequencer
before being forwarded to all receivers in each destination
group. When a sequencer receives a groupcast message, in
addition to incrementing the sequence number for each recip-



Algorithm 2 ReceiverHandlePacket(pkt)
M: total number of sequencers
gid: receiver group ID
bu f : ordered queue of undelivered messages
s[M]: largest sequence number received (per sequencer)
c[M]: largest clock value received (per sequencer)

1: if pkt.seq[gid]≤ s[pkt.id] then
2: return
3: end if
4: c[pkt.id]←max{c[pkt.id], pkt.c}
5: Deliver DROP-NOTIFICATION for

(s[pkt.id]+1 . . . pkt.seq[gid]−1) (inclusive)
6: s[pkt.id]← pkt.seq[gid]
7: if pkt is not a flush message∧ pkt ̸∈ bu f then
8: Add pkt to bu f
9: end if

10: for p in bu f do
11: if p⪯min{(c[m], m) : m ∈ (1 . . .M)} then
12: Dequeue p from bu f and deliver p
13: else
14: break
15: end if
16: end for

ient group and inserting a multi-stamp, it writes its current
clock value into the packet (Algorithm 1 line 2-5). Note that
reading the clock value and incrementing sequence numbers
must be done in an atomic block. Strict monotonicity of phys-
ical clocks and the above atomicity requirement ensure the
following: for any two groupcast messages m1 and m2 with
an overlapping recipient group g sequenced by the same se-
quencer, s1 ̸= s2 ∧ (s1 < s2 ⇐⇒ c1 < c2), where s1 and s2
are the assigned sequence numbers for g, and c1 and c2 are
the assigned clock values.

With a clock value inserted into each groupcast message,
Hydra defines the partial ordering (≺) of groupcast messages
in the following way: for groupcast messages m1 and m2
with overlapping recipient groups and clock values c1 and
c2 sequenced by sequencers with IDs i and j, m1 ≺ m2 if
c1 < c2 ∨ (c1 = c2 ∧ i < j) 2. Breaking ties between equal
clock values using sequencer IDs is necessary in guaranteeing
the partial order property in §4.1.

Hydra groupcast receivers deliver groupcast messages to
their users according to our partial order. If a receiver re-
ceives groupcast messages m2 before m1 with m1 ≺ m2, it
must either deliver a DROP-NOTIFICATION for m1 before de-
livering m2 or add m2 to a buffer until it receives m1. However,
delivery based on physical clocks alone is not strong enough
to detect message drops.

4.3.2 Combining Physical Clocks and Multi-Stamps for
Drop Detection

Attaching sequence numbers to messages offers the useful
property that any dropped message can be detected by observ-

2For ease of exposition, we slightly abuse the ≺ notation: it applies to
both groupcast messages and (clock value, sequencer ID) tuples.

ing gaps in the number sequence. Unfortunately, this property
is lost when using physical clocks to order messages – a re-
ceiver seeing a message with a clock value c cannot determine
if it missed any message with c′ < c. To detect message drops,
Hydra combines physical clock values and sequence numbers
from multiple sequencers. Hydra receivers buffer incoming
messages and deliver them in clock value order, but only once
they have determined – based on sequence numbers – that
no message with a lower clock value from another sequencer
will be delivered.

Specifically, each Hydra receiver maintains two values for
each sequencer i (Algorithm 2): the largest group sequence
number s[i] it has received from i, and the largest clock value
c[i] among messages it has received from i. Let cmin be the
minimum value among all (c[i], i) tuples, ordered by ≺. A
Hydra receiver delivers messages using the following rules:
(i) it delivers pending groupcast messages in clock value

and sequencer ID order (line 10),
(ii) it will only deliver a single message or DROP-

NOTIFICATION for each sequence number from each se-
quencer (lines 1 and 6),

(iii) it only delivers groupcast messages m if m⪯ cmin (line
11), and

(iv) when receiving groupcast message m with sequence num-
ber s from sequencer i, if s > s[i]+1, it delivers a DROP-
NOTIFICATION for each message from s[i]+ 1 to s− 1
(line 5).

From our discussion in §4.3.1, rules (i) and (ii) ensure the
partial ordering property of Hydra groupcast. To show how
rules (iii) and (iv) enforce drop detection, we leverage a key
invariant: for a receiver r in group g and for any groupcast
message m that has g as a recipient group, if m⪯ cmin, then
r has either received m, or has received another groupcast
message m′ stamped with a higher sequence number from
the same sequencer. With this invariant, the drop detection
property of Hydra groupcast is guaranteed, since r either de-
livers m (m is received and rules (i) and (iii)), or delivers a
DROP-NOTIFICATION for m (m′ is received and rule (iv)). As
an optimization, Hydra receivers can delay the delivery of
DROP-NOTIFICATIONs until a message is needed to advance
cmin. Because Hydra is robust to message reordering, this does
not affect the correctness of the receiver protocol.

4.3.3 Ensuring Progress with Flush Messages

Our groupcast design so far ensures all the properties listed
in §4.1, but has one remaining issue. In order for a receiver
to make progress in delivering messages, it needs to receive
groupcast messages from all sequencers to advance cmin. For
instance, if a receiver has received message m≻ cmin, to de-
liver m, the receiver needs to receive messages from other se-
quencers to advance cmin. Consequently, any single sequencer
that stays idle for an extended period of time would impede
the progress of all groupcast receivers in the system.

To ensure progress in message delivery, each sequencer



Message Legend
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Figure 1: An example execution of the Hydra message delivery protocol. At every step, the state of the Hydra buffer is displayed along
with any messages delivered to the application. Hydra groupcasts are written ⟨G, sequencer, multi-stamp, timestamp⟩, while
flush messages are written ⟨F, sequencer, multi-stamp, timestamp⟩, and DROP-NOTIFICATIONs are written ⟨D, sequencer,
sequence_num⟩. A multi-stamp is a set of (group, sequence_num) tuples. This execution follows a receiver in group 1 receiving
messages from two sequencers, 1 and 2. Transitions between states of the receiver show the message being received.

periodically sends a flush message to all groupcast receivers
containing its current clock value and the latest sequence num-
ber that the sequencer has sent to each receiver group (without
incrementing). When a receiver receives a flush message from
sequencer i, it follows the same procedure (§4.3.2) to advance
c[i], cmin, and s[i]. Applications are unaware of flush messages.
Receivers, however, still use the sequence number in flush
messages to deliver DROP-NOTIFICATIONs, following rule
(iv) (Algorithm 2 line 5). Again, Hydra receivers can delay
the delivery of DROP-NOTIFICATIONs until they are needed
as an optimization.

The above protocol guarantees that, in the absence of fail-
ures (we discuss failure handling below), all received group-
cast messages on every receiver will eventually be delivered.
Clock divergence on different sequencers can delay message
delivery (up to the clock skew), since cmin on each receiver
depends on the sequencer with the slowest clock value, but
cannot violate any of the safety properties.

Figure 1 shows an example execution of Hydra from the
point of view of a single receiver receiving groupcast and
flush messages from two sequencers. At every step of the
execution, the receiver accepts an incoming message and
delivers groupcasts and DROP-NOTIFICATIONs and retains
pending groupcasts in its local buffer according to the rules
defined in §4.3.2.

4.4 Handling Sequencer Failures

If a sequencer fails or link failures occur between a sequencer
and some of the groups, some (or all) groupcast receivers
will stop delivering messages, since they no longer receive
messages from the failed sequencer and are unable to advance
cmin. We use a reconfiguration protocol to address this issue.

Concretely, each Hydra deployment uses a centralized,
fault-tolerant configuration service to manage a sequence
of configurations. Each configuration specifies the set of
sequencers and groupcast receivers (here we only discuss
changes to sequencers across configurations). Groupcast re-
ceivers also store the current configuration locally. When a
receiver suspects that sequencer j in the current configuration
n has failed, e.g., when it has not received messages from

sequencer j in a timeout period, it notifies the configuration
service. The configuration service creates a new configuration
n+1 with sequencer j removed, and sends the configuration
to all groupcast receivers.

When groupcast receivers receive the new configuration,
they run an agreement protocol to agree on the last sequence
number each receiver group should deliver from the failed
sequencer. To do so, each Hydra receiver additionally stores,
for each sequencer, the largest sequence number it has seen
in a multi-stamp for each receiver group (not just its own). To
continue the sequencer removal process, each receiver sends
a message with the largest sequence numbers (for all groups)
it has received from the failed sequencer to the configuration
service and stops processing messages with higher sequence
numbers from that sequencer. Once the configuration service
receives a quorum of these messages from each receiver group,
it aggregates them to derive the highest sequence number each
receiver group has or should have received from the failed se-
quencer. The configuration service sends a removal message
to each group. A groupcast receiver delivers all necessary
DROP-NOTIFICATIONs based on this removal message and
continues to deliver messages following the rules in §4.3.2;
the removal message serves as a final flush from the failed
sequencer (with an infinitely large timestamp). Once all pend-
ing messages from the failed sequencer have been delivered,
the receiver can safely transition to the new configuration.
To avoid inconsistencies caused by different configurations,
a receiver always attaches its current configuration number
when delivering messages to the application.

Discussion. How does Hydra’s recovery protocol compare,
in terms of availability, to single-sequencer systems like those
originally used by NOPaxos and Eris? Like these systems,
Hydra experiences an interruption in message delivery caused
by the failure of a sequencer. However, Hydra receivers can
resume delivering messages from the other sequencers once
they run the above protocol, which requires coordination only
between the receivers, not the network layer. Thus, its un-
availability period depends only on failure detection time
and the agreement protocol latency, which can be orders-of-



magnitude shorter than the duration of network rerouting. It
can also support more aggressive sequencer removal with
shorter timeouts. Even though deploying more sequencers
increases sequencer failure probability, by avoiding network
rerouting on the critical path, Hydra still achieves overall
improvement in system availability.

Adding new sequencers. To add a sequencer k to the sys-
tem, the configuration service similarly creates a new con-
figuration n+1 with sequencer k added, and sends the con-
figuration to all receivers. Once a receiver receives the new
configuration, it stops delivering groupcast messages to the
application, and waits until it receives a flush message from
the new sequencer k that has a higher timestamp than its latest
delivered message. It then sends that flush message to the con-
figuration service. When the configuration service receives a
quorum of flush messages from each receiver group, it picks
the flush message with the highest timestamp, denoted as tk,
and broadcasts that flush to all receivers; tk effectively serves
as the starting time of the new configuration. A receiver then
resumes delivering messages for the previous configuration,
until the next-to-be-delivered message has timestamp big-
ger than tk. At that point, the receiver transitions to the next
configuration, sets s[k] to the sequence number in the flush
message it receives from the configuration service, and starts
delivering messages from the new sequencer. Note that if an
old sequencer (removed previously) rejoins in a new config-
uration, the sequencer’s ID is reassigned to a value unique
from all other IDs, and its sequence numbers are all reset.

4.5 Correctness

We provide a detailed discussion of the safety of the Hy-
dra protocol in Appendix B. In addition, a TLA+ speci-
fication [40] of the Hydra groupcast and sequencer addi-
tion/removal protocols (Appendix C) has been model checked
against Hydra’s safety guarantees.

The liveness of the Hydra protocol is straightforward: as
long as (1) receivers continue to receive groupcasts or flush
messages from non-failed sequencers, and (2) the configura-
tion service remains available and can communicate with a
quorum of each receiver group to remove failed sequencers
and complete the addition of new sequencers, Hydra group-
casts will be delivered.

4.6 Optimizations

Flush messages facilitate progress of Hydra receivers. How-
ever, generating flush messages at an overly aggressive rate
will adversely affect a receiver’s performance, as these flush
messages consume network, CPU, and I/O resources. To strike
a balance between message delivery latency and throughput,
we propose two optimizations: receiver-side flush message
solicitation and in-network flush message aggregation.

4.6.1 Receiver-Side Flush Message Solicitation

In our basic protocol described in §4.3.3, sequencers periodi-
cally send flush messages to all receivers. We can manually
tune the flush message generating interval T on sequencers to
adjust the latency/throughput trade-off: a smaller T improves
message delivery latency but increases the load on the re-
ceivers, while a larger T has the opposite effect. However,
since flush messages are broadcast to all receivers, this one-
value-for-all policy cannot account for the different processing
capacities and load levels on different receivers. Moreover,
blindly sending flush messages every T time unit, particularly
when T is small, can result in significant amount of unneces-
sary traffic. To see why this is the case, consider a receiver
that currently has no message to deliver. Any flush message
sent to this receiver, before the next Hydra message (with
a higher clock value) arrives, will have no effect on the re-
ceiver’s delivery progress and thus are strictly unnecessary.

Our key observation is that receivers, not sequencers, have
perfect knowledge of when flush messages are required: re-
ceivers only need flush messages to make progress when
they possess undelivered messages. We therefore propose a
receiver-centric optimization, in which sequencers do not ac-
tively generate flush messages; instead, receivers explicitly
request flush messages when needed. This optimization also
enables various solicitation policies on the receivers. To op-
timize for latency, a receiver can immediately request flush
messages when it receives groupcast messages that cannot be
delivered. To optimize for throughput, it can delay requesting
flush messages, equivalent to a batching approach. It can also
apply a more sophisticated approach where it determines the
solicitation delay based on the current load of the receiver,
adaptively optimizing for both latency and throughput.

4.6.2 In-Network Flush Message Aggregation

Our message delivery rules (§4.3.2) require that a receiver
delivers a groupcast message if and only if it has received mes-
sages with higher clock values from all other sequencers. The
implication of this rule is that, the number of flush messages
required to deliver a groupcast message increases linearly
with the number of sequencers. To further reduce the pro-
cessing overhead caused by excessive flush messages, we
propose an advanced optimization technique inspired by re-
cent in-network aggregation work. Concretely, we leverage
ToR programmable switches connected to Hydra receivers
to track each sequencer’s clock value and sequence numbers.
These numbers are updated when a ToR switch receives a
flush message, but it does not immediately forward the flush
message to the receiver. Only when the minimum stored
clock value becomes large enough, the switch sends a single
aggregated flush message containing all the clock values and
sequence numbers to the receiver. To accurately determine
this threshold, receivers attach the largest clock value among
all undelivered messages in its flush message solicitation re-
quest. The ToR switch uses this value as the clock threshold,



which guarantees that the aggregated flush message would
allow the receiver to deliver all undelivered messages in the
buffer (those when the solicitation request was made). By
applying our in-network aggregation optimization, the num-
ber of flush messages a receiver processes remains constant
regardless of the number of sequencers.

5 Hydra Implementation
A Hydra deployment contains a dynamic set of groupcast
senders, receivers, and sequencers, managed by a configura-
tion service. We use a centrally-controlled SDN approach
for managing groupcast routing: a POX [58]-based SDN
controller installs rules that route groupcast messages to a
randomly-selected reachable sequencer. When using end-host
sequencers, we use a source routing approach: the configura-
tion service tracks addresses of sequencers, which are cached
on Hydra senders. When sending groupcast messages, senders
randomly pick one of the sequencers and send to it via unicast.
No special network routing is required.

Hydra sequencers each maintain minimal state: a unique
sequencer ID, a sequence number for each receiver group, and
a physical clock that is monotonically increasing. One of our
key design principles is simplicity. It enables us to implement
a Hydra sequencer efficiently on different hardware platforms.

In-network sequencing using programmable switches.
Implementing Hydra sequencers in the data plane of network
switches offer the highest sequencing performance, as cur-
rent programmable switches can process billions of packets
per second, with switching latency consistently under a few
hundred nanoseconds. Hydra groupcast is implemented as
an application-level protocol atop UDP. We reserve a special
UDP port for Hydra groupcast, and append a customized Hy-
dra header after the UDP header. The Hydra header includes a
bitmap to specify the destination groups, a vector of sequence
numbers (one for each destination group), and a single clock
value. The switch implementation uses one switch register
array element for each receiver group to store its current se-
quence number. The switch checks each bit of the bitmap,
and for each enabled bit, increments the corresponding se-
quence number register and writes the sequence number into
the Hydra header. Since there is no dependency across groups
when processing a groupcast message, bit checking and se-
quence number updating for all destination groups can be
done in parallel. This enables us to significantly reduce the
required pipeline stages, allowing us to scale to higher num-
ber of groups. Subsequently, the switch stamps the hardware
clock time into the header, and uses the replication engine to
multicast the packet to receivers.

End-host Sequencers. Implementing Hydra sequencers on
end-host servers offers better flexibility and portability, partic-
ularly attractive for deployments that cannot deploy special-
ized hardware. The downside is comparatively lower packet
processing performance. Our Hydra protocol, however, en-

ables scaling sequencing performance by adding additional se-
quencers. As we will show in our evaluation (§7.1.3), through-
put of Hydra scales linearly with the number of sequencers.

Sender and receiver libraries. Hydra provides user-space
libraries for sending and receiving groupcast messages. In
addition to coordinating with the configuration service to track
active sequencers and groups, this library also implements
receiver-side buffering to deliver messages in the right order,
and the flush message solicitation policies of §4.6.1. We have
implemented two I/O stacks for the libraries. First, a polling-
based DPDK [23] stack for efficient, kernel-bypassed packet
processing. Second, a Linux-based transport using sockets
and libevent [45] for better compatibility. Our evaluation in
§7 uses the DPDK stack.

6 Building Distributed Systems using Hydra
Our Hydra groupcast primitive has a unique set of trade-offs
between its guarantees and efficiency of the implementation.
Compared to best effort primitives such as unicast and IP
multicast, Hydra offers strong message ordering guarantees;
compared to atomic broadcast and atomic multicast primitives,
Hydra does not guarantee reliable message delivery, but can
be implemented efficiently using a single phase protocol. In
order to show the benefits of its design, we applied Hydra to
two recent distributed systems – NOPaxos and Eris [42, 43] –
and built a state machine replication called HydraPaxos and a
distributed transaction processing system called HydraTxn.

Hydra’s groupcast provides the same guarantees as the
network protocols used in NOPaxos and Eris (Ordered Unre-
liable Multicast and Multi-sequenced Groupcast). Therefore,
Hydra is readily composed with these existing protocols. Hy-
draPaxos and HydraTxn use the NOPaxos and Eris protocols
to tolerate server faults and handle DROP-NOTIFICATION,
while use Hydra to provides message ordering guarantees and
allows the adding and removing of sequencers. The only nec-
essary modifications to NOPaxos and Eris are the disabling of
their sequencer failure handling protocols, as this is handled
by Hydra itself. Both HydraPaxos and HydraTxn can commit
operations in a single round trip in the normal case.

HydraPaxos. HydraPaxos is a state machine replication
system based on NOPaxos that tolerates crash failures of
less than half of the replicas (or equivalently, with 2 f + 1
replicas, HydraPaxos tolerates f crash failures). It guarantees
linearizability [30] as long as the application state machine
is deterministic. Each HydraPaxos deployment registers a
unique Hydra groupcast address. HydraPaxos clients send
state machine operations as a groupcast message with a single
destination group. Each replica in a HydraPaxos deployment
acts as a single Hydra receiver of the group. HydraPaxos
operations are handled in a single round trip in the normal
case. Once Hydra delivers an operation to the replicas, the
replicas use the NOPaxos protocol to ensure operations are
committed durably. Briefly, each replica adds the operation to



its log, and the leader replica executes the operation against
the current state. Clients wait for consistent replies from a
majority of replicas (including the leader) before considering
a reply committed. When a DROP-NOTIFICATION is delivered
to a replica, replicas need to reach consensus on the fate of
the message – either to process or to permanently ignore – to
ensure linearizability. The replica first attempts to recover the
missing message by contacting other replicas in the group. If
replicas fail to recover the dropped message, they coordinate
(driven by the leader) to commit the message as a NO-OP.

HydraTxn. HydraTxn, is a fault-tolerant, distributed trans-
action processing system. HydraTxn partitions the entire data
store into multiple shards with each shard replicated on multi-
ple servers. Clients wrap data reads and writes into transac-
tions. HydraTxn guarantees atomic, strict serializable execu-
tion of the transactions, and tolerates failures of less than half
of the replicas in each shard. Similar to HydraPaxos, each Hy-
draTxn deployment uses a unique Hydra groupcast address.
Each shard of the deployment is assigned a unique group, and
each replica in the shard registers a Hydra group receiver,
delivering Hydra messages and DROP-NOTIFICATIONs. For
transactions that qualify as independent transactions – stored
procedures that has no dependency across shards and requires
no client interactions – clients send the transaction in a single
Hydra groupcast message destined to all the involved shards.
HydraTxn also supports more general transactions by divid-
ing them into multiple independent transactions and using
two-phase locking on the servers to ensure isolation. As in
HydraPaxos, independent transactions are handled in a single
round trip in the normal case. Replicas in each shard involved
in the transaction log the transaction and reply to the client,
with the leader of each shard additionally executing the trans-
action. Clients wait for majority quorums from each shard
to reply before considering a transaction committed. Since
a transaction groupcast may involve multiple shards, DROP-
NOTIFICATION requires all involved shards, not just the local
group, to reach consensus on the reception/dropping decision.
Similar to Eris [42], we use a logically separate, fault-tolerant
failure coordinator service to manage this agreement protocol.

7 Evaluation
Our Hydra implementation includes Hydra host libraries,
switch data and control planes, end-host sequencers, and Hy-
dra co-designed replication (HydraPaxos) and transactional
(HydraTxn) protocol implementations. The switch data plane
is implemented in 1040 lines of P4 [11] code, and the switch
control plane is written in 493 lines of Python code. We im-
plemented the end-host sequencer, Hydra host libraries, the
HydraPaxos protocol, and the HydraTxn protocol in approxi-
mately 8000 lines of C++ code.

Our evaluation testbed consists of 10 nodes connected to
an APS BF6064X-T (Barefoot Tofino-based) programmable
switch. We ran servers/replicas on nodes with dual 2.90GHz
Intel Xeon Gold 6226R processors (32 total cores), 256 GB

RAM. We used the remaining nodes to run clients and end-
host sequencers. Clients use 2.10GHz Intel Xeon Gold 6230
processors (20 total cores) and 96 GB RAM. All nodes
ran Ubuntu Linux 20.04 and use Mellanox ConnectX-5
100 GbE NICs. We statically partitioned resources on the pro-
grammable switch to implement multiple switch sequencers.

7.1 Hydra Groupcast Microbenchmarks

We first used microbenchmarks to evaluate the performance
of our Hydra groupcast primitive. We ran closed-loop clients,
each sending groupcast messages to a set of receiver groups.
When a Hydra receiver delivers a groupcast message, it imme-
diately replies to the client. Clients send the next groupcast
message when they receives replies from each receiver in all
destination groups (we assume no receivers fail).

We compared Hydra to two other groupcast implementa-
tions. First, we implemented a version of genuine atomic
multicast [28]. To atomic multicast a message, a client first
sends the message to all the receivers in each destination
group. Receivers in each group run a consensus round to
agree on a message timestamp and send the group timestamp
to the client. The client picks the highest timestamp as the
final message number, and forwards the message number to
all involved group receivers. Receivers deliver messages in
message number order. Second, we implement an unordered
multicast – receivers immediately deliver client messages
without any ordering guarantee – as a baseline.

7.1.1 Latency and Throughput

In the first experiment, we used a single group with three
receivers to evaluate the base case performance. Two switch
sequencers were deployed when evaluating Hydra, and we
applied the receiver-side solicitation optimization (§4.6.1).
We gradually increased the offered client load, and measured
both the latency and the throughput of each system. As shown
in Figure 2a, Hydra achieves a 378% increase in throughput
and 42% reduction in latency compared to atomic multicast.
Running consensus among group receivers for each message
adds substantial throughput and latency overheads to atomic
multicast. On the contrary, Hydra receivers require no coor-
dination among each other to deliver messages in consistent
order. In the worst case, they wait for a half RTT (receiver
→ switch→ receiver) to receive flush messages in order to
deliver a groupcast. This overhead is reflected in Hydra’s
small latency penalty (3 µs) compared to the baseline. As
Hydra receivers can deliver messages without explicit flush
messages when sequencers receive enough traffic, Hydra is
able to attain throughput within 39% of the baseline.

Increasing group size. Next, we added more receivers to
the group. When we increased the group size threefold (from
three to nine), throughput of Hydra dropped only by 8%, and
its latency remained the same. Hydra scales well to larger
group sizes because receivers can independently determine
the correct order of messages with no coordination. Perfor-
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Figure 2: Latency and throughput of running a micro multicast benchmark. We use two switch sequencers for Hydra, and compare its
performance to an atomic multicast and an unordered multicast protocol. For (b) and (c), we use a group size of three.
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Figure 3: Impact of different flush message policies and parameters
on performance of Hydra. The policies are: the receiver solicitation
strategy (SOL), sequencer generation strategy (GEN), adaptive so-
licitation strategy (ADP), ToR switch aggregation (AGG).

mance of atomic multicast, however, degrades proportionally
to the number of receivers as the cost of consensus increases.
At group size of nine, Hydra outperforms atomic multicast by
567% in throughput and 56% in latency.

Scaling to more groups. To test how well Hydra scales
to larger number of groups, we fixed the group size to three
receivers, and increased the total number of groups. We used a
workload where 80% of the groupcast messages were destined
to a single group, and the remaining 20% had two destination
groups. Clients chose destination groups following a uniform
distribution. As shown in Figure 2b and Figure 2c, Hydra’s
throughput and latency continue to closely match the base-
line. At 15 groups, throughput of Hydra is within 25% of the
baseline, and 340% higher than atomic multicast.

7.1.2 Impact of Flush Messages

As we discussed in §4.6, policies for generating and handling
flush messages can affect Hydra performance. To evaluate
their effectiveness, we ran 15 groups each with three receivers,
deployed four switch sequencers, and measured the latency
and throughput of Hydra with increasing client load. We apply
three flush message policies and show their impact in Figure 3:
(1) sequencers periodically generate flush messages (GEN),

(2) receivers solicit flush messages from sequencers after a
delay (SOL), (3) receivers adaptively solicit flush messages
based on current load (ADP). We also examine the impact
of having ToR switches aggregate flush messages from se-
quencers (AGG).

When we use a higher delay for generating or soliciting
flush messages, receivers on average need to wait longer to
deliver messages. This effect is validated by the higher aver-
age latency experienced by GEN and SOL when their delay
is at 100 µs. By decreasing the delay, both policies enjoy bet-
ter message delivery latency. Unfortunately, it also degrades
maximum throughput, as receivers use more CPU cycles to
process flush messages – up to 14% lower throughput for
GEN. ToR switch aggregation reduces the impact of frequent
flush messages: AGG improves the throughput of GEN by
14%. Finally, by using an adaptive solicitation strategy, ADP
achieves both low latency – it immediately requests flush mes-
sages when it has spare CPU cycles – and high throughput –
it does not receive excessive flush messages at high utiliza-
tion. As shown in Figure 3, it attains latency within 3µs and
throughput within 33% that of the baseline result.

7.1.3 Sequencer Scalability

To evaluate the sequencer scalability of Hydra, we emulated
an increasing number of switch sequencers (up to eight) on
the same physical switch. For each emulated sequencer, we
allocated a dedicated queue in the switch traffic manager
that rate limits to 10 Gbps. Due to the limited number of
physical servers, we only deployed 15 real Hydra groups, each
with three receivers. To saturate the sequencers’ capacity, we
deployed additional virtual groups, whose request traffic were
simply dropped at the switch egress ports. Figure 4a shows
that throughput of the system increases linearly with more
deployed switch sequencers. With eight sequencers, Hydra
can process more than 250 million groupcast per second. The
additional switch sequencers also have minimum impact on
groupcast latency.

For clusters without programmable switches, sequencers
can be deployed on end-host servers, offering an immediately
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Figure 4: Scalability of Hydra with increasing number of sequencers.
We use 15 groups, three receivers per group, and deploy sequencers
on switches and end-host servers. We also generate additional group-
cast traffic to virtual Hydra groups to saturate the sequencers.

deployable solution. End-host sequencers, however, have lim-
ited processing capacity compared to an in-switch implemen-
tation. Figure 4b shows that Hydra can avoid this dilemma
by adding more end-host sequencers, with near-linear scal-
ing. With enough Hydra traffic, request load were evenly
distributed among all sequencers. Since receivers need to
wait for at least one message from each sequencer for mes-
sage delivery, latency of Hydra increases slightly with more
sequencers.

7.2 HydraPaxos Evaluations

Next, we evaluate the performance benefits of co-designing
state machine replication (SMR) systems with Hydra. We
compared our HydraPaxos to three other SMR protocols:
Paxos (with the Multi-Paxos optimization), Fast Paxos, and
NOPaxos. We also ran an unreplicated system with no fault
tolerance as a baseline. All protocols were implemented in the
same codebase for a fair comparison. We deployed each SMR
system on three replica servers, ran an echo-RPC applica-
tion, and measured the end-to-end latency and throughput of
each system with increasing client load. We used two switch
sequencers for HydraPaxos, and one switch sequencer for
NOPaxos. Figure 5 shows HydraPaxos achieves significantly
higher throughput than Paxos (204%) and Fast Paxos (180%),
by avoiding replica coordination in the common case. Figure 5
also shows that our design can attain performance compara-
ble to a network serialization approach: HydraPaxos achieves
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Figure 5: State machine replication system comparison. We measure
the latency and throughput of HydraPaxos and other SMR protocols
with three replicas. HydraPaxos uses two switch sequencers.

latency within 5 µs and throughput within 17% of NOPaxos.
Like NOPaxos, HydraPaxos can sustain its throughput even
with a moderate rate of packet drops (≤ 0.1%), because drop
recovery uses a lightweight protocol; a full evaluation appears
in Appendix A.

7.3 HydraTxn Evaluations

The second distributed application we evaluated was a fault-
tolerant, distributed transactional system. We compared Hy-
draTxn with three other systems: Granola [19], Eris [42], and
a standard distributed transactional system [17] called Lock-
Store that uses two-phase commit, two-phase locking, and
Paxos. All systems are implemented in the same code base.
We deployed each system on 15 database shards, each repli-
cated on three servers. HydraTxn uses two switch sequencers,
while Eris uses only one. Similar to our experiment in §7.1.3,
we rate limit each sequencer’s bandwidth in the switch traffic
manager and generate traffic to virtual Hydra groups.

We use the YCSB+T [16] benchmark that wraps read and
write operations into stored-procedure style transactions.
The workload we used consists of single-shard transactions
with a read/write ratio of 1:1. Keys are selected using a uni-
form distribution. As shown in Figure 6, HydraTxn avoids
server coordination overhead when processing transactions,
leading to a 3.1× and 1.9× throughput, and a 49% and 13% la-
tency reduction compared to Lock-Store and Granola. Perfor-
mance of Eris is bottlenecked by the single switch sequencer.
Excessive client load can even cause sequenced packets to be
dropped in the network, leading to throughput collapse due to
more frequent drop agreement protocol [42]. Hydra enables
HydraTxn to scale beyond the central sequencer bottleneck,
achieving a 47% throughput improvement over Eris.

We also tested HydraTxn’s resilience to network anomalies
by injecting simulated packet drops. As in the SMR experi-
ment, small to moderate levels of packet drops have minimal
impact on HydraTxn’s performance (Appendix A).

7.4 Network-Level Load Balancing

To evaluate the impact of our approach on network properties,
we simulated a data center network with a three-layer FatTree
topology in NS3. The network consisted of 2560 servers and
112 switches. All servers generate background traffic follow-
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Figure 6: Distributed transactional system comparison. We mea-
sure the latency and per-shard throughput of HydraTxn and other
transactional systems when running on 15 shards each replicated on
three servers. HydraTxn uses two sequencers, while Eris uses one
sequencer.
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(b) Network link utilization when multicast messages are randomly routed to
one of the eight ToR switch sequencers

Figure 7: Average link utilization of a simulated data center network.
We simulate a three-layer FatTree topology with 2560 servers and
112 switches. Links between servers and ToR switches are 1 Gbps,
and all other links are 10 Gbps.

ing a Poisson distribution. We set up 16 multicast receiver
groups in the network, each with three receivers. We selected
a few servers across the data center to generate periodic multi-
cast messages, each message destined to a randomly selected
group. We compared two approaches: a network serialization
approach where all multicast messages are routed through
a single ToR switch, and the Hydra approach where eight
ToR switches are deployed as sequencers. Figure 7 shows
the link utilization of each aggregation and core layer link
for each approach. In the network serialization deployment,
several aggregation layer links were fully saturated due to
concentrated multicast traffic. By distributing multicast traffic
across multiple sequencer switches, utilization of all core and
aggregation links stayed below 50% in the Hydra deployment,
demonstrating the load balancing benefit of our approach.

102 103 104

Latency (μs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1 sequencer (no congestion)
1 sequencer
8 sequencers, w/o CAR
8 sequencers, w/ CAR

Figure 8: Latency distribution of multicast in the same simulated
data center network as Figure 7. We generate bursty traffic to a
single sequencer switch that causes congestion.
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(b) Throughput of HydraTxn during a sequencer failover

Figure 9: Throughput of Eris and HydraTxn during a sequencer
failover. For both, we injected a sequencer failure at time 0.

We then studied the impact of network congestion by gen-
erating bursty background traffic to one of the sequencer
switches. Figure 8 shows that in a network serialization de-
ployment, congestion at the sequencer switch caused median
multicast latency to degrade by more than 13×. By distribut-
ing multicast traffic to multiple sequencer switches, Hydra
reduces the impact of local congestion and improves the me-
dian latency by 11×. We also simulated congestion-aware
routing (CAR) [3] for Hydra. By preferentially routing to
non-congested sequencers, Hydra further improves multicast
tail latency.

7.5 Sequencer Failover

Lastly, we evaluated the effectiveness of Hydra in handling se-
quencer failures and compared it to the network serialization
approach. To do so, we used the same transactional system
setup in §7.3, triggered a sequencer failure during the run,
and measured the sustained throughput over time. As shown
in Figure 9b, after the Hydra receivers detected the failure
of one of the sequencers (we used a 30 ms timeout value),
they immediately ran a reconfiguration protocol to remove the
failed sequencer. The protocol only took a few hundred mi-
croseconds. HydraTxn was able to resume normal operation



and returned to its maximum throughput afterwards, using
the remaining sequencers. By contrast, Eris (Figure 9a) relies
on the network control plane needed to perform rerouting
once a failure is detected, to forward client requests to a new
sequencer switch. We simulated a 100 ms rerouting delay
which matches results in the literature [38]. Unlike HydraTxn,
Eris remained unavailable during network rerouting, demon-
strating the benefit of our redundant sequencer approach.

8 Related Work
Ordered group communication primitives such as atomic mul-
ticast [28] have a long history, dating back to virtual syn-
chrony [8], and have been implemented and used widely [4,9,
32,34,62]. The classic atomic broadcast model is equivalent to
consensus [13]. Our work explicitly adopts the ordered but un-
reliable communication model introduced by NOPaxos [43]
and Eris [42], which enables network-accelerated sequencing.

Other distributed systems also use sequencers.
CORFU [63] combines an unreliable sequencer with
replicated storage on flash to build a shared log that
can be used to build distributed data structures [7].
vCorfu [63] extends it to a multi-log abstraction analogous
to multi-sequencing. Scalog [22] addresses the blocking
reconfiguration and sequencer scalability issues of previous
shared log designs by distributing log data to replicated data
shards and periodically order log entries using an Paxos-based
ordering layer. Hydra does not guarantee message persistence,
so it avoids the overhead of intra-shard replication. Hydra
also eliminates coordination among the sequencers on the
critical path, which reduces message delivery latency and
avoids potential bottlenecks of a centralized ordering service.
Percolator [54] uses a sequencer for transaction processing,
and deterministic databases like Calvin [60], SLOG [60], and
Aria [47] combine sequencers with transaction schedulers for
concurrency control.

Hydra builds on work on improving the scalability of con-
sensus protocols. Its use of multiple active sequencers and
flush messages is analogous to Mencius’s rotating leader [48].
Hydra uses loosely synchronized clocks [46] to establish a
total order, an idea used in concurrency control protocols like
CLOCC [1], Spanner [17], and TAPIR [66]. Protocols like
PTP [59] make clock synchronization widely available in data
centers, and recent work like Sundial [44] and DPTP [35]
demonstrates the precision available. Hydra’s approach of
using timestamps to order operations is similar to that of
TEMPO [24]. However, TEMPO requires at least one and a
half RTTs to commit a timestamp. Hydra, using network se-
quencers, can commit timestamps in half of an RTT even in
the presence of concurrent requests. Similar to TEMPO, Hydra
also waits for higher timestamps from other sequencers to
ensure a timestamp is stable.

Hydra is designed to support programmable devices as se-
quencers, including PISA/RMT switch ASICs [12]. Recent
work shows that these switches can implement complex pro-

tocols including consensus [20,21] and chain replication [33].
Like NOPaxos and Eris, Hydra intentionally implements a
limited set of sequencing functionality on the switch, leav-
ing most of the protocol complexity at the end hosts. Red-
Plane [37] and SwiSh [64, 65] provide abstractions for repli-
cating switch data plane state for reliability and scalability,
respectively; sequencing, which requires strong consistency
and frequent updates, represents a worst-case performance
scenario for both, necessitating a different approach.

A concurrent effort, 1Pipe [41] uses programmable
switches in a data center to implement causally and totally
ordered communication. Senders in 1Pipe attach local times-
tamps to messages, and receivers deliver messages strictly
in timestamp order. To determine when a timestamp is safe
to deliver, switches in 1Pipe track barrier information from
all ingress links and write the aggregated barrier timestamp
into each packet. Hosts and switches periodically send beacon
messages on idle links to ensure progress.

Hydra similarly uses timestamps to order messages. A
key difference is that 1Pipe uses sender-generated times-
tamps, while in Hydra timestamps are generated by the se-
quencers. Consequently, 1Pipe requires synchronized clocks
on all nodes in the network and in-network computation at
each switch, a deployment challenge in heterogeneous net-
works where not all switches are programmable [57]; Hydra
accommodates more practical deployments by only running
logic on the sequencers and replicas, and only synchronizing
clocks across sequencers. Moreover, in a 1Pipe deployment,
any node, link, or switch failure in the network would stall
the progress of all receivers; in Hydra, only failures local to
the sequencers may impact progress.

9 Conclusion
The deployment of network sequencing approaches has been
hindered because they require serializing messages through
a single sequencer. Hydra addresses this with a new proto-
col that allows the concurrent use of multiple sequencers. A
Hydra deployment serves as a drop-in replacement for se-
quencers in systems like NOPaxos and Eris, making their ben-
efits more widely accessible. In particular, it scales beyond the
performance of a single sequencer, which allows commodity
servers rather than programmable switches; reduces system
downtime during sequencer failures; and improves network
load balancing by avoiding serialization.

Acknowledgments

We thank our shepherd Shuai Mu and the anonymous review-
ers for their valuable feedback. We also thank Xin Zhe Khooi
and Raj Joshi for their helpful comments on the P4 imple-
mentaion. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship.
Jialin Li was supported by an MOE AcRF Tier 1 grant T1
251RES2104, an ODPRT SUG grant, and a Huawei research
grant TC20211206645.



References
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari.

Efficient optimistic concurrency control using loosely
synchronized clocks. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, San Jose, CA, USA, June 1995. ACM.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture. In
Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication, SIGCOMM ’08, page 63–74,
New York, NY, USA, 2008. Association for Computing
Machinery.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,
F. Matus, R. Pan, N. Yadav, and G. Varghese. Conga:
Distributed congestion-aware load balancing for
datacenters. In Proceedings of ACM SIGCOMM 2014,
2014.

[4] Y. Amir and J. Stanton. The Spread wide area group
communication system. Technical Report CNDS-98-4,
The Johns Hopkins University, Baltimore, MD, USA,
1998.

[5] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yush-
prakh. Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In Proceedings of the
Conference on Innovative Data system Research, CIDR
’11, Asilomar, California, 2011.

[6] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-
ber, M. Wei, and J. D. Davis. CORFU: A Shared Log
Design for Flash Clusters. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI ’12, San Jose, CA, USA, 2012.
USENIX Association.

[7] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: Distributed Data Structures over a
Shared Log. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13,
Farminton, Pennsylvania, 2013. Association for Com-
puting Machinery.

[8] K. Birman and T. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Proceedings of the
Eleventh ACM Symposium on Operating Systems Prin-
ciples, SOSP ’87, page 123–138, New York, NY, USA,
1987. Association for Computing Machinery.

[9] K. P. Birman. Replication and fault-tolerance in the isis
system. In Proceedings of the Tenth ACM Symposium on

Operating Systems Principles, SOSP ’85, page 79–86,
New York, NY, USA, 1985. Association for Computing
Machinery.

[10] K. P. Birman and T. A. Joseph. Reliable communication
in the presence of failures. ACM Trans. Comput. Syst.,
5(1):47–76, jan 1987.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44(3), July 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz. Forwarding
metamorphosis: Fast programmable match-action pro-
cessing in hardware for SDN. In Proceedings of ACM
SIGCOMM 2013, Hong Kong, China, Aug. 2013. ACM.

[13] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. In Pro-
ceedings of the Eleventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’92, page
147–158, New York, NY, USA, 1992. Association for
Computing Machinery.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber. Bigtable: A Distributed Storage System for Struc-
tured Data. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI
’06, Seattle, Washington, 2006. USENIX Association.

[15] Cisco data center infrastructure design guide 2.5.
https://www.cisco.com/application/pdf/en/
us/guest/netsol/ns107/c649/ccmigration_
09186a008073377d.pdf.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, page 143–154, New York,
NY, USA, 2010. Association for Computing Machinery.

[17] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-Distributed Database. In Proceedings of the
10th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’12, Hollywood, CA, USA,
2012. USENIX Association.

https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf


[18] I. Corporation. Intel Tofino 3 Intelligent
Fabric Processor Brief. https://www.
intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-3-brief.html.

[19] J. Cowling and B. Liskov. Granola: Low-Overhead Dis-
tributed Transaction Coordination. In Proceedings of the
2012 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC ’12, Boston, MA, 2012. USENIX
Association.

[20] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weath-
erspoon, M. Canini, F. Pedone, and R. Soulé. Net-
work hardware-accelerated consensus. Technical Re-
port USI-INF-TR-2016-03, Università della Svizzera
italiana, May 2016.

[21] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weather-
spoon, M. Canini, N. Zilberman, F. Pedone, and R. Soulé.
P4xos: Consensus as a network service. Technical Re-
port USI-INF-TR-2018-01, Università della Svizzera
italiana, May 2018.

[22] C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and
R. Van Renesse. Scalog: Seamless reconfiguration and
total order in a scalable shared log. In Proceedings of
the 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’20), Santa Clara,
CA, USA, Feb. 2020. USENIX.

[23] Data Plane Development Kit. https://www.dpdk.
org/.

[24] V. Enes, C. Baquero, A. Gotsman, and P. Sutra. Efficient
replication via timestamp stability. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 178–193, New York, NY, USA, 2021.
Association for Computing Machinery.

[25] P. Gill, N. Jain, and N. Nagappan. Understanding net-
work failures in data centers: Measurement, analysis,
and implications. In Proceedings of ACM SIGCOMM
2011, Toronto, ON, Canada, Aug. 2011.

[26] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable Consistency in Scatter. In Pro-
ceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, SOSP ’11, Cascais, Portugal,
2011. Association for Computing Machinery.

[27] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, page 51–62,
New York, NY, USA, 2009. Association for Computing
Machinery.

[28] R. Guerraoui and A. Schiper. Genuine atomic multicast
in asynchronous distributed systems. Theor. Comput.
Sci., 254(1–2):297–316, mar 2001.

[29] C. Guo, H. Wu, Z. Deng, J. Y. Gaurav Soni, J. Padhye,
and M. Lipshteyn. RDMA over commodity Ethernet
at scale. In Proceedings of ACM SIGCOMM 2016,
Florianopolis, Brazil, Aug. 2016. ACM.

[30] M. P. Herlihy and J. M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, jul 1990.

[31] Hesiod. Theogony. c. 730 BCE.

[32] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song,
E. Tremel, R. V. Renesse, S. Zink, and K. P. Birman.
Derecho: Fast state machine replication for cloud ser-
vices. ACM Transactions on Computer Systems, 36(2):1–
49, Apr. 2019.

[33] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. NetChain: Scale-Free Sub-RTT
coordination. In Proceedings of the 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI ’18), Renton, WA, USA, Apr. 2018.
USENIX.

[34] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems. In
Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems and Networks, DSN
’11, page 245–256, USA, 2011. IEEE Computer Society.

[35] P. G. Kannan, R. Joshi, and M. C. Chan. Precise time-
synchronization in the data-plane using programmable
switching asics. In Proceedings of the 2019 Symposium
on SDN Research (SOSR ’19), Santa Jose, CA, USA,
Mar. 2019. ACM.

[36] X. Z. Khooi, L. Csikor, J. Li, and D. M. Divakaran. In-
network applications: Beyond single switch pipelines.
In 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft), pages 1–8, 2021.

[37] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Se-
shan. RedPlane: Enabling fault tolerant stateful in-
switch applications. In Proceedings of ACM SIGCOMM
2021, Virtual Conference, Aug. 2021. ACM.

[38] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. In-
oue, T. Hama, and S. Shenker. Onix: A distributed
control platform for large-scale production networks. In
Proceedings of the 9th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’10, page
351–364, USA, 2010. USENIX Association.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.dpdk.org/
https://www.dpdk.org/


[39] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-Data Center Consistency. In
Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, Prague, Czech Repub-
lic, 2013. Association for Computing Machinery.

[40] L. Lamport. The TLA+ home page. https://lamport.
azurewebsites.net/tla/tla.html.

[41] B. Li, G. Zuo, W. Bai, and L. Zhang. 1pipe: Scalable
total order communication in data center networks. In
Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, SIGCOMM ’21, page 78–92. Association for
Computing Machinery, 2021.

[42] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-
Free Consistent Transactions Using In-Network Concur-
rency Control. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, Shanghai,
China, 2017. Association for Computing Machinery.

[43] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just Say No to Paxos Overhead: Replac-
ing Consensus with Network Ordering. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’16, Savannah, GA,
USA, 2016. USENIX Association.

[44] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild,
D. Platt, S. Sabato, M. Yu, N. Dukkipati, P. Chandra, and
A. Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’20), Banff, AL, Canada, Nov. 2020.
USENIX.

[45] libevent – an event notification library. https://
libevent.org/.

[46] B. Liskov. Practical uses of synchronized clocks in dis-
tributed systems. In Proceedings of the 10th ACM Sym-
posium on Principles of Distributed Computing (PODC

’91), Montreal, QC, Canada, Aug. 1991. ACM.

[47] Y. Lu, X. Yu, L. Cao, and S. Madden. Aria: A fast and
practical deterministic oltp database. Proceedings of the
VLDB Endowment, 13(12):2047–2060, July 2020.

[48] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machines for WANs.
In Proceedings of the 8th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI ’08,
San Diego, California, 2008. USENIX Association.

[49] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. Portland: A scalable fault-tolerant layer
2 data center network fabric. In Proceedings of the

ACM SIGCOMM 2009 Conference on Data Commu-
nication, SIGCOMM ’09, page 39–50, New York, NY,
USA, 2009. Association for Computing Machinery.

[50] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In Proceedings of the
10th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI ’13, Lombard, IL, 2013.
USENIX Association.

[51] NTP clock discipline algorithm. https://www.eecis.
udel.edu/~mills/ntp/html/discipline.html.

[52] B. M. Oki and B. H. Liskov. Viewstamped Replica-
tion: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of
the Seventh Annual ACM Symposium on Principles of
Distributed Computing, PODC ’88, Toronto, Ontario,
Canada, 1988. Association for Computing Machinery.

[53] D. Ongaro and J. Ousterhout. In Search of an Under-
standable Consensus Algorithm. In Proceedings of the
2014 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIX ATC ’14, Philadelphia, PA,
2014. USENIX Association.

[54] D. Peng and F. Dabek. Large-scale incremental process-
ing using distributed transactions and notifications. In
Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’10),
Vancouver, BC, Canada, Oct. 2010. USENIX.

[55] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden,
and B. Liskov. Transactional Consistency and Auto-
matic Management in an Application Data Cache. In
Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI ’10,
Vancouver, BC, Canada, 2010. USENIX Association.

[56] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing Distributed Systems Using Ap-
proximate Synchrony in Data Center Networks. In Pro-
ceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI ’15, Oak-
land, CA, 2015. USENIX Association.

[57] D. R. K. Ports and J. Nelson. When should the network
be the computer? In Proceedings of the 17th Work-
shop on Hot Topics in Operating Systems (HotOS ’19),
Bertinoro, Italy, May 2019. ACM.

[58] POX SDN controller. https://github.com/
noxrepo/pox.

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://libevent.org/
https://libevent.org/
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox


[59] IEEE 1588 standard for a precision clock syn-
chronization protocol for networked measurement
and control systems. https://www.nist.gov/
el/intelligent-systems-division-73500/
ieee-1588.

[60] K. Ren, D. Li, and D. J. Abadi. SLOG: Serializable,
low-latency, geo-replicated transactions. Proceedings of
the VLDB Endowment, 12(11):1747–1761, July 2019.

[61] R. Van Renesse and D. Altinbuken. Paxos Made Mod-
erately Complex. ACM Computing Survey, 47(3), Feb.
2015.

[62] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A
flexible group communication system. Communications
of the ACM, 39(4):76–83, Apr. 1996.

[63] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-
shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,
S. Swanson, M. J. Freedman, and D. Malkhi. vCorfu:
A Cloud-Scale Object Store on a Shared Log. In Pro-
ceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation, NSDI’17, Boston,
MA, USA, 2017. USENIX Association.

[64] L. Zeno, D. R. K. Ports, J. Nelson, D. Kim, S. L. Feibish,
I. Keidar, A. Rinberg, A. Rashelbach, I. De-Paula, and
M. Silberstein. SwiSh: Distributed shared state abstrac-
tions for programmable switches. In Proceedings of
the 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’22), Renton, WA,
USA, Apr. 2022. USENIX.

[65] L. Zeno, D. R. K. Ports, J. Nelson, and M. Silberstein.
SwiShmem: Distributed shared state abstractions for
programmable switches. In Proceedings of the 16th
Workshop on Hot Topics in Networks (HotNets ’20),
Chicago, IL, USA, Nov. 2020. ACM.

[66] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building consistent transactions
with inconsistent replication. ACM Transactions on
Computer Systems, 35(4):12, Dec. 2018.

A Additional Evaluation
A.1 Clock Skew

Clock skew among sequencers does not affect Hydra cor-
rectness, but can delay message delivery progress. To eval-
uate the impact of clock skews, we deployed eight switch
sequencers, 15 groups (no virtual groups), and three receivers
in each group. We injected artificial clock skews to different
sequencers, and measured both the latency and throughput of
Hydra. As shown in Figure 10, clock skew does not impact
Hydra throughput. Messages stamped by sequencers with
faster clocks are buffered temporarily on the receivers, but
the rate of delivering messages remains the same. At small to
medium clock skews (1 to 10 µs), Hydra experiences marginal
latency penalties (0 to 5 µs). Such clock skews are realistic:
modern clock synchronization protocols [59] can maintain
clock skews in the sub-microsecond range, and recent work
has demonstrated synchronization error under 50 ns between
programmable switches [35]. Even a 200 µs clock skew only
resulted in less than 100 µs of added latency.

A.2 Message Loss for HydraPaxos and HydraTxn

Handling message drops. When Hydra messages are
dropped in the network, HydraPaxos replicas need to coor-
dinate to handle DROP-NOTIFICATIONs. To evaluate Hydra-
Paxos’s resilience to network anomalies, we measured its max-
imum throughput when an increasing percentage of packets
were artificially dropped in the network. Figure 11 shows that
HydraPaxos is able to sustain its high throughput even with a
moderate rate of packet drops (≤ 0.1%). HydraPaxos uses a
lightweight protocol to recover from DROP-NOTIFICATIONs,
as long as the message is not dropped on all replicas. At
higher drop rates, throughput of HydraPaxos starts to decline
due to more frequent coordination. We observe a similar level
of throughput reduction for NOPaxos at these high drop rates.

We conduct the same experiment for HydraTxn. As in the
SMR experiment, small to moderate levels of packet drops
have minimal impact on HydraTxn’s performance (Figure 12):
its peak throughput decreased only by 11% even when the
network dropped 1% of packets, and remained higher than
that of Eris.
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Figure 10: Latency and throughput of Hydra with increasing clock
skew among sequencers. We use 15 groups, three receivers per group,
and eight switch sequencers. Clock skew shows the maximum skew
between any two sequencers.
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Figure 11: Maximum throughput of SMR systems with increasing
packet drop rate. All systems run on three replicas. HydraPaxos uses
two switch sequencers.
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Figure 12: Maximum throughput of transactional systems with in-
creasing packet drop rate. All systems run on 15 shards each repli-
cated three-way. HydraTxn uses two switch sequencers.

B Proof of Safety
As specified in §3.1 Hydra provides the following guarantees
to receivers of groupcast messages:
• Partial Ordering. All groupcast messages are partially

ordered (the partial order relation is denoted as ≺) – all
groupcast messages with overlapping destination groups
are comparable. If groupcast message m1 is ordered before
m2 (m1 ≺m2) and a receiver receives both m1 and m2, then
every receiver delivers m1 before m2.

• Unreliable Delivery. Hydra only offers best effort mes-
sage delivery. A groupcast message is not guaranteed to be
delivered to any of its recipients.

• Drop Detection. If a groupcast message is not delivered
to all its recipients, the primitive will notify the remaining
receivers by delivering a DROP-NOTIFICATION. More for-
mally, let R be the set of receiver groups for message m,
then either one of the following two conditions holds: all
receiver groups in R deliver m or a DROP-NOTIFICATION
for m, or none of the receiver groups in R delivers m or a
DROP-NOTIFICATION for m.
It is important to note that Hydra receiver groups, like

NOPaxos and Eris receiver groups, use quorum-based proto-
cols to decide which messages are delivered to the the group
and which are permanently dropped. In order to tolerate the
failure of some receivers in a receiver group, the drop de-
tection requirement only considers each receiver group as a
whole. Here, a receiver group delivers a message m or DROP-

NOTIFICATION for m if every receiver in some quorum deliv-
ers m or a DROP-NOTIFICATION for m. Individual receivers
in a group can diverge from the quorum when a sequencer is
added or removed, and the receiver groups themselves must be
able to handle this divergence. (NOPaxos and Eris do handle
this case.) If an application using Hydra requires that the drop
detection property apply uniformly to all receivers, then the
quorum size for each receiver group is the size of the entire
group.

Also important to note is that in the drop detection require-
ment, when we say a receiver delivers a DROP-NOTIFICATION
for message m, what we mean is that the receiver delivers a
DROP-NOTIFICATION for m before delivering any message
ordered after m in the partial order. In this way, the drop
detection requirement is indeed a safety requirement and not
a liveness guarantee.

In the absence of sequencer failures, the correctness of Hy-
dra’s groupcast delivery is straightforward. Receivers deliver
groupcast messages only when the message’s clock value
is less than or equal to cmin, the minimum among the latest
timestamps received from each of the sequencers. In fact,
they only deliver messages whose timestamp is exactly cmin,
as ties in clock value are broken by sequencer ID. Because
receivers only deliver messages in sequence number order,
once message m is delivered by a receiver, no message with
smaller sequence number or clock value from m’s sequencer
will be delivered by the receiver. Therefore, messages are
always delivered in (timestamp,sequencer ID) order, which
is a total order; the partial ordering guarantee is satisfied a
fortiori. Furthermore, because receivers always deliver DROP-
NOTIFICATION for smaller undelivered sequence numbers
before delivering a message when there would be gaps in
the sequence numbers delivered for that sequencer, the drop
detection guarantee is satisfied.

In order to show that the sequencer removal process is
correct, we first note that it is consistent with the Hydra
safety guarantees for a receiver to at any time deliver a DROP-
NOTIFICATION for the next sequence number yet to be deliv-
ered for some sequencer. The sequencer removal process is
functionally equivalent to each receiver delivering infinitely
many DROP-NOTIFICATIONs for all non-delivered sequence
numbers for that sequencer. The agreement round is only nec-
essary to determine exactly how many DROP-NOTIFICATIONs
each receiver must explicitly deliver based on the results from
each quorum. If a message m or a DROP-NOTIFICATION for
m is delivered by a quorum from group g, and the sequencer
that sequenced m is removed, then the configuration service is
guaranteed to receive a multi-stamp with a sequence number
for g at least as high as m’s. Before transitioning to the new
configuration (or delivering any message with a timestamp
larger than m’s), all other receiver groups that m was sent to
must deliver a DROP-NOTIFICATION for m. Similarly, if no
quorum from any receiver group received m or a message
with sequence number larger than m’s’ before agreeing to



stop processing messages from the removed sequencer, then
m will never be delivered by any receiver group (nor will an
explicit DROP-NOTIFICATION for m be delivered by any re-
ceiver group). Therefore, for every groupcast sequenced by
the removed sequencer, either all groups deliver the message
or a DROP-NOTIFICATION for it or none do, satisfying the
drop detection requirement.

When a sequencer is added, the flush message with times-
tamp tk constructed by the configuration service when adding
sequencer k is sent to all receiver groups. tk is necessarily
larger than the clock value of any message delivered by a quo-
rum of receivers by construction. No message from sequencer
k with clock value less than or equal to tk will be delivered, nor
will any DROP-NOTIFICATION for a message from sequencer
k with clock value less than or equal to tk. tk was derived
from a flush message that included sequence numbers for all
groups, and upon entering the new configuration, a receiver
immediately sets its sequence number for the added sequencer
to the one included in this flush message. Conversely, once
the new configuration starts, receivers in the new configu-
ration will deliver messages or DROP-NOTIFICATIONs from
the new sequencer with timestamp greater than tk following
the normal protocol for message delivery. Therefore, for any
groupcast sequenced by the added sequencer, either all groups
deliver the message or a DROP-NOTIFICATION for it or none
do, satisfying the drop detection requirement.



module Hydra

Specifies the Hydra protocol.

Receiver groups in this model are treated as single entities. This is done to increase model
checking performance and avoid making assumptions about the protocol being run by the receiver
groups. This specification focuses on the Hydra protocol and avoids the details of the quorum-
based protocol being run by the receivers.

extends Naturals , FiniteSets , Sequences , TLC

Constants and Variables

constants numSequencers , receivers , initialActiveSequencers

assume numSequencers ∈ Nat
assume numSequencers > 0
assume IsFiniteSet(receivers)
assume IsFiniteSet(initialActiveSequencers)
assume initialActiveSequencers ∈ subset Nat

sequencers
∆
= (1 . . numSequencers)

mGroupcast
∆
= “mGroupcast”

mFlush
∆
= “mFlush”

mAddSequencer
∆
= “mAddSequencer”

mFinishAdd
∆
= “mFinishAdd”

mRemoveSequencer
∆
= “mRemoveSequencer”

mFinishRemove
∆
= “mFinishRemove”

vGroupcast
∆
= “vGroupcast”

vDropNotification
∆
= “vDropNotification”

variables messages , sequencerState, receiverState, configState

Init
∆
= ∧messages = {}

∧ sequencerState = [s ∈ sequencers 7→
[timestamp 7→ 0,
sequenceNums 7→ [v ∈ receivers 7→ 0]
]]

∧ receiverState = [v ∈ receivers 7→ [
Undelivered groupcasts

buffer 7→ {},
Delivered groupcasts and drop notifications

delivered 7→ 〈〉,
Largest timestamps seen

timestamps 7→ [s ∈ sequencers 7→ 0],
Largest sequenceNums seen

sequenceNums 7→ [s ∈ sequencers 7→ 0],
Currently active sequencers

C Hydra TLA+ Specification



activeSequencers 7→ initialActiveSequencers ,
Sequencers being added

addedSequencers 7→ initialActiveSequencers ,
Sequencers being removed

removedSequencers 7→ {}
]]

∧ configState = [addedSequencers 7→ initialActiveSequencers ,
removedSequencers 7→ {}]

Helper and Utility Functions

Min(S )
∆
= choose s ∈ S : ∀ sp ∈ S : sp ≥ s

Max (S )
∆
= choose s ∈ S : ∀ sp ∈ S : sp ≤ s

Range(f )
∆
= {f [x ] : x ∈ domain f }

recursive SeqFromSet( )
SeqFromSet(S )

∆
=

if S = {} then 〈〉
else let x

∆
= choose x ∈ S : true

in 〈x 〉 ◦ SeqFromSet(S \ {x})

Short-hand way of sending a message

Send(m)
∆
= messages ′ = messages ∪ {m}

Main utility function for delivering groupcasts and drop notifications.

Receiver r adds G to its buffer, increments sequencer s’s timestamp to t , increments s’s
sequenceNum to n, and delivers deliverable groupcasts.

It also permanently removes all sequencers in the removed set.

DeliverAvailable(r , G, s , t , n, removed)
∆
=

let
rstate

∆
= receiverState[r ]

newRemovedSequencers
∆
= rstate.removedSequencers ∪ removed

newActiveSequencers
∆
= rstate.activeSequencers \ removed

bg
∆
= rstate.buffer ∪G

oldLog
∆
= rstate.delivered

newTimestamps
∆
= [rstate.timestamps except ! [s ] = Max ({@, t})]

newSequenceNums
∆
= [rstate.sequenceNums except ! [s ] = Max ({@, n})]

Groupcasts about to be delivered

deliverable
∆
= {gp ∈ bg :

Min({newTimestamps [sp] :
sp ∈ newActiveSequencers}) ≥ gp.timestamp}



Newly/previously delivered Groupcasts + previous drop notifications

delivered
∆
= Range(oldLog) ∪ deliverable

newBuffer
∆
= bg \ deliverable

Necessary drop notifications

dropNotifications(sequencer)
∆
= {

[vtype 7→ vDropNotification,
sequencer 7→ sequencer ,
sequenceNum 7→ k ] : k ∈ {l ∈ (1 . . newSequenceNums [sequencer ]) :

¬∃ gp ∈ Range(oldLog) ∪ bg :
∨ ∧ gp.vtype = vDropNotification

∧ gp.sequencer = sequencer
∧ gp.sequenceNum = l

∨ ∧ gp.vtype = vGroupcast
∧ gp.sequencer = sequencer
∧ gp.sequenceNums [r ] = l}}

allDropNotifications
∆
= union {dropNotifications(s) : sp ∈ sequencers}

orderedDropNotifications
∆
= SortSeq(

SeqFromSet(allDropNotifications),
lambda d1, d2 : d1.sequenceNum < d2.sequenceNum)

orderedDeliverables
∆
= SortSeq(SeqFromSet(deliverable),

lambda g1, g2 : ∨ g1.timestamp < g2.timestamp
∨ ∧ g1.timestamp = g2.timestamp

∧ g1.sequencer < g2.sequencer)

newLog
∆
= oldLog ◦ orderedDropNotifications ◦ orderedDeliverables

in
∧ receiverState ′ = [receiverState except ! [r ] =

[@ except ! .buffer = newBuffer ,
! .timestamps = newTimestamps ,
! .delivered = newLog,
! .sequenceNums = newSequenceNums ,
! .activeSequencers = newActiveSequencers ,
! .removedSequencers = newRemovedSequencers

]]
∧ unchanged 〈messages , sequencerState, configState〉

Main Spec

If two receivers deliver groupcasts, they deliver them in the same order

GlobalOrder
∆
= ∀ r1, r2 ∈ receivers : let

d1
∆
= receiverState[r1].delivered

d2
∆
= receiverState[r2].delivered



in
∀n1 1 ∈ (1 . . Len(d1)), n2 1 ∈ (1 . . Len(d2)) :

( ∧ d1[n1 1] = d2[n2 1]
∧ d1[n1 1].vtype = vGroupcast
∧ d2[n2 1].vtype = vGroupcast) ⇒

∀n1 2 ∈ (1 . . n1 1), n2 2 ∈ (n2 1 + 1 . . Len(d2)) :
( ∧ d1[n1 2].vtype = vGroupcast
∧ d2[n2 2].vtype = vGroupcast) ⇒

d1[n1 2] 6= d2[n2 2]

If any receiver delivers a Groupcast , then all receivers deliver that

Groupcast or a DropNotification before that timestamp

Delivery
∆
= ∀ r1 ∈ receivers : let

d1
∆
= receiverState[r1].delivered

in
∀n1 ∈ (1 . . Len(d1)) :

d1[n1].vtype = vGroupcast ⇒
let

g1
∆
= d1[n1]

t
∆
= g1.timestamp

in
∀ r2 ∈ domain g1.sequenceNums :
let

d2
∆
= receiverState[r2].delivered

in
∨ ∃ g2 ∈ Range(d2) : g1 = g2
∨ ¬∃ g2 ∈ Range(d2) : ∧ g2.vtype = vGroupcast

∧ g2.timestamp ≥ t
∨ ∃n2 ∈ (1 . . Min({x ∈ domain d2 :

d2[x ].vtype = vGroupcast ∧ d2[x ].timestamp ≥ t})) :
∧ d2[n2].vtype = vDropNotification
∧ d2[n2].sequencer = g1.sequencer
∧ d2[n2].sequenceNum = g1.sequenceNums [r2]

Groupcasts are always delivered in timestamp and sequence number order

LocalOrder
∆
= ∀ r ∈ receivers :

let
deliveredGroupcasts

∆
= SelectSeq(receiverState[r ].delivered ,

lambda g : g.vtype = vGroupcast)
deliveredFromSequencer(s)

∆
= SelectSeq(deliveredGroupcasts ,

lambda g : g.sequencer = s)
SeqNum(g)

∆
= if g.vtype = vGroupcast

then g.sequenceNums [r ]
else g.sequenceNum

in



∧ ∀n ∈ (1 . . Len(deliveredGroupcasts) − 1) :
deliveredGroupcasts [n].timestamp ≤ deliveredGroupcasts [n + 1].timestamp

∧ ∀ s ∈ sequencers : ∀n ∈ (1 . . Len(deliveredFromSequencer(s)) − 1) :
SeqNum(deliveredFromSequencer(s)[n]) ≤
SeqNum(deliveredFromSequencer(s)[n + 1])

Safety
∆
= GlobalOrder ∧Delivery ∧ LocalOrder

Actions and Message Handlers

Advance time at sequencer s

AdvanceTime(s)
∆
=

∧ sequencerState ′ = [sequencerState except ! [s ] =
[@ except ! .timestamp = @+ 1]]

∧ unchanged 〈messages , receiverState, configState〉

Sequencer s sends a groupcast to set of receivers R

SendGroupcast(s)
∆
= ∃R ∈ subset receivers :

∧ Cardinality(R) > 0
∧ Send([mtype 7→ mGroupcast ,

sequencer 7→ s ,
timestamp 7→ sequencerState[s ].timestamp + 1,
sequenceNums 7→ [r ∈ R 7→

sequencerState[s ].sequenceNums [r ] + 1]
])

∧ sequencerState ′ = [sequencerState except ! [s ] =
[@ except ! .sequenceNums = [r ∈ receivers 7→

if r ∈ R then @[r ] + 1 else @[r ]],
! .timestamp = @+ 1]]

∧ unchanged 〈receiverState, configState〉

Sequencer s sends a flush

SendFlush(s)
∆
=

∧ Send([mtype 7→ mFlush,
sequencer 7→ s ,
timestamp 7→ sequencerState[s ].timestamp,
sequenceNums 7→ sequencerState[s ].sequenceNums
])

∧ unchanged 〈sequencerState, receiverState, configState〉

Receiver r receives an mGroupcast message m from receiver i

HandleGroupcast(r , m)
∆
=

let
rstate

∆
= receiverState[r ]

s
∆
= m.sequencer

n
∆
= m.sequenceNums [r ]



g
∆
= [vtype 7→ vGroupcast ,

timestamp 7→ m.timestamp,
sequencer 7→ s ,
sequenceNums 7→ m.sequenceNums ]

in
Don’t accept Groupcasts if we’re adding a sequencer

∧ rstate.addedSequencers ⊆
(rstate.activeSequencers \ rstate.removedSequencers)

Sequencer must be active and not being removed

∧ s ∈ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
Don’t receive if already handled

∧ g.sequenceNums [r ] > rstate.sequenceNums [s ]
∧DeliverAvailable(r , {g}, s , m.timestamp, n, {})

Receiver r receives an mFlush message m

HandleFlush(r , m)
∆
=

let
rstate

∆
= receiverState[r ]

s
∆
= m.sequencer

t
∆
= m.timestamp

largestDeliveredTimestamp
∆
= Max ({0} ∪ {

g.timestamp : g ∈ {gp ∈ Range(rstate.delivered) :
gp.vtype = vGroupcast}})

in
Don’t accept flushes while adding sequencers

∨ ∧ rstate.addedSequencers ⊆
(rstate.activeSequencers \ rstate.removedSequencers)

∧ s ∈ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
∧DeliverAvailable(r , {}, s , t , m.sequenceNums [r ], {})

∨ ∧ s ∈ rstate.addedSequencers \ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
∧ t > largestDeliveredTimestamp
∧ Send([mtype 7→ mAddSequencer ,

receiver 7→ r ,
sequencer 7→ s ,
timestamp 7→ t ,
sequenceNums 7→ m.sequenceNums ])

∧ unchanged 〈sequencerState, receiverState, configState〉

Receiver r begins adding sequencer s

BeginAddSequencer(r , s)
∆
=

let
rstate

∆
= receiverState[r ]



in
∧ s /∈ rstate.activeSequencers
∧ s /∈ rstate.addedSequencers
∧ s /∈ rstate.removedSequencers
∧ receiverState ′ = [receiverState except ! [r ] =

[@ except ! .addedSequencers = @ ∪ {s}]]
∧ unchanged 〈messages , sequencerState, configState〉

The config service finalizes the addition of sequencer s

AddSequencer(s)
∆
=

let
adds

∆
= {m ∈ messages : m.mtype = mAddSequencer ∧m.sequencer = s}

tStart
∆
= Max ({m.timestamp : m ∈ adds})

seqsStart
∆
= (choose m ∈ adds : m.timestamp = tStart).sequenceNums

in
∧ s /∈ configState.addedSequencers
∧ ∀ r ∈ receivers : ∃m ∈ adds : m.receiver = r
∧ Send([mtype 7→ mFinishAdd ,

sequencer 7→ s ,
timestamp 7→ tStart ,
sequenceNums 7→ seqsStart ])

∧ configState ′ = [configState except ! .addedSequencers = @ ∪ {s}]
∧ unchanged 〈sequencerState, receiverState〉

Receiver r receives an mFinishAdd message m

HandleFinishAdd(r , m)
∆
=

let
s

∆
= m.sequencer

rstate
∆
= receiverState[r ]

in
∧ s /∈ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
∧ s ∈ rstate.addedSequencers
∧ receiverState = [receiverState except ! [r ] =
[@ except ! .activeSequencers = @ ∪ {s},

! .timestamps = [@ except ! [s ] = m.timestamp],
! .sequenceNums = [@ except ! [s ] = m.sequenceNums [r ]]]]

∧ unchanged 〈messages , sequencerState, configState〉

BeginRemoveSequencer(r , s)
∆
=

let
rstate

∆
= receiverState[r ]

gs
∆
= {g ∈ Range(rstate.delivered) ∪ rstate.buffer :

∧ g.vtype = vGroupcast
∧ g.sequencer = s}



seqs
∆
= [rp ∈ receivers 7→ Max ({0} ∪

{g.sequenceNums [rp] : g ∈
{gp ∈ gs : rp ∈ domain gp.sequenceNums}})]

in
∧ s /∈ rstate.removedSequencers
∧ Send([mtype 7→ mRemoveSequencer ,

receiver 7→ r ,
sequencer 7→ s ,
sequenceNums 7→ seqs ])

∧ receiverState ′ = [receiverState except ! [r ] =
[@ except ! .removedSequencers = @ ∪ {s}]]

∧ unchanged 〈sequencerState, configState〉

RemoveSequencer(s)
∆
=

let
removes

∆
= {m ∈ messages :

m.mtype = mRemoveSequencer ∧m.sequencer = s}
lastSeqs

∆
= [r ∈ receivers 7→ Max ({0} ∪

{m.sequenceNums [r ] : m ∈ removes})]
in

∧ s /∈ configState.removedSequencers
∧ ∀ r ∈ receivers : ∃m ∈ removes : m.receiver = r
∧ Send([mtype 7→ mFinishRemove,

sequencer 7→ s ,
sequenceNums 7→ lastSeqs ])

∧ configState ′ = [configState except ! .removedSequencers = @ ∪ {s}]
∧ unchanged 〈sequencerState, receiverState〉

Receiver r receives an mFinishRemove message m

HandleFinishRemove(r , m)
∆
=

let
s

∆
= m.sequencer

rstate
∆
= receiverState[r ]

in
∧ s /∈ rstate.removedSequencers
∧DeliverAvailable(r , {}, s , 0, m.sequenceNums [r ], {s})

Main Transition Function

Next
∆
= ∨ ∃ s ∈ sequencers : ∨AdvanceTime(s)

∨ SendGroupcast(s)
∨ SendFlush(s)
∨AddSequencer(s)
∨RemoveSequencer(s)

∨ ∃m ∈ messages :



∨ ∧m.mtype = mGroupcast
∧ ∃ r ∈ domain m.sequenceNums : HandleGroupcast(r , m)

∨ ∧m.mtype = mFlush
∧ ∃ r ∈ domain m.sequenceNums : HandleFlush(r , m)

∨ ∧m.mtype = mFinishAdd
∧ ∃ r ∈ receivers : HandleFinishAdd(r , m)

∨ ∧m.mtype = mFinishRemove
∧ ∃ r ∈ receivers : HandleFinishRemove(r , m)

∨ ∃ r ∈ receivers : ∃ s ∈ sequencers :
∨ BeginAddSequencer(r , s)
∨ BeginRemoveSequencer(r , s)
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