
The Case of Unsustainable CPU Affinity
Jiechen Zhao

University of Toronto
Toronto, Canada

Katie Lim
University of Washington

Seattle, USA

Thomas Anderson
University of Washington

Seattle, USA

Natalie Enright Jerger
University of Toronto

Toronto, Canada

ABSTRACT
CPU affinity reduces data copies and improves data locality and
has become a prevalent technique for high-performance programs
in datacenters. This paper explores the tension between CPU affin-
ity and sustainability. In particular, affinity settings can lead to
significant uneven aging of cores on a CPU. We observe that in-
frastructure threads, used in a wide spectrum of network, storage,
and virtualization sub-systems, exercise their affinitized cores up
to 23×more when compared to typical 𝜇s-scale application threads.
In addition, we observe that the affinitized infrastructure threads
generate regional heat hot spots and preclude CPUs from being
used with the expected lifetime. Finally, we discuss design options
to tackle the unbalanced core-aging problem to improve the overall
sustainability of CPUs and call for more attention to sustainability-
aware affinity and mitigation of such problems.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Hard-
ware→ Power and energy.

KEYWORDS
sustainability, CPU, micro-architecture, reliability, datacenter soft-
ware, datacenter infrastructure, operating systems
ACM Reference Format:
Jiechen Zhao, Katie Lim, Thomas Anderson, and Natalie Enright Jerger. 2023.
The Case of Unsustainable CPU Affinity. In 2nd Workshop on Sustainable
Computer Systems (HotCarbon ’23), July 9, 2023, Boston, MA, USA. ACM,
Boston, MA, USA, 7 pages. https://doi.org/10.1145/3604930.3605706

1 INTRODUCTION
Today’s datacenter applications require a response to a single user
request from thousands of software services. Achieving high re-
quest rates under 𝜇s-scale tail latency is particularly important
for requests with service times of only a couple of 𝜇s (e.g., Mem-
CacheD [36] or RAMCloud [39]). However, recent studies have
shown that CPUs are not well-designed for today’s cloud applica-
tions [10, 18, 26, 46, 47]. The common bottlenecks for those 𝜇s-scale

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotCarbon ’23, July 9, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0242-6/23/07. . . $15.00
https://doi.org/10.1145/3604930.3605706

applications are CPU front-end stalls and data miss penalties, even
when no resource interference exists.

CPU affinity is a system setting that is used to improve data
locality and reduce context switches. The affinity is realized by the
operating system (OS) that binds a thread and a physical core so that
the thread always runs on that particular core. The affinity setting
has beenwidely used tomitigate the aforementioned CPU efficiency
problem. For example, modern latency-critical (LC) applications
benefit from the affinity setting to achieve low end-to-end latency
and high throughput [25, 32].

This paper focuses on a broader usage of the affinity setting.
Within datacenters, besides application threads, many infrastructure-
managed threads need CPU affinity for high performance as well. Al-
though those threads do not execute useful business logic, their per-
formance fundamentally determines the tail latency and through-
put of LC applications because they closely coordinate with LC
application threads on each request. These threads widely exist
in low-latency network/storage stacks [2, 6, 11, 41, 44, 50], virtu-
alization stacks [31, 40, 49], and many user- or OS-level modern
schedulers [2, 24, 38].

In this work, we study the effects of CPU affinity in terms of
sustainability: what are the implications of CPU affinity on cores’
lifetime? Two main factors have been positioned as determinants of
cores’ lifespan. First, transistors gradually wear out by the continu-
ous movement of charges, manifesting as slower transistors and,
thus, slower critical paths [12]. Second, thermal variance across a
chip die generates hot spots. The heat asymmetry causes gradual
elevation of the threshold voltage and longer transistor switching
delay [16, 48] on some cores.

Although prior work discusses some relevant aspects of CPU
lifetimes, we find there are still the following two fundamental
challenges in understanding, measuring, and anticipating cores’
sustainability:
• There lacks a methodology to distinguish infrastructure threads
and LC applications threads that require core-pinning. We term
them core𝐼𝑛𝑓 𝑟𝑎 and core𝐿𝐶𝐴𝑝𝑝 .1 While the microarchitectural
features of core𝐿𝐶𝐴𝑝𝑝 have been extensively explored [10, 18,
26, 46, 47], there has been little exploration of common features
across different core𝐼𝑛𝑓 𝑟𝑎 .

• Although a wide range of modeling has been proposed to esti-
mate the lifetime of cores, they usually require knowledge such
as transistor-level activity factors and manufacturing parame-
ters [37, 48]. This information is either hard or too costly to

1Since we focus on CPU affinity, if not clarified, threads and cores are interchangeable
in this paper.

https://doi.org/10.1145/3604930.3605706
https://doi.org/10.1145/3604930.3605706

collect over time. Metrics visible at runtime and manageable by
cloud providers are still missing.
To this end, this work investigates the downside of CPU affinity

across various core𝐿𝐶𝐴𝑝𝑝 and core𝐼𝑛𝑓 𝑟𝑎 . Three key insights that
guide our proposal:
• Even though instructions per cycle (IPC) is sometimes not an
accurate metric for measuring performance [7, 30], IPC is a good
metric to describe core-aging, which correlates with the switch-
ing activity of critical transistor paths [37]. On top of that, the
instructions per second metric is useful to represent how worn-
out a core has been during a time unit.

• Our experiments suggest that it is important to distinguish be-
tween core𝐿𝐶𝐴𝑝𝑝 and core𝐼𝑛𝑓 𝑟𝑎 for maintaining cores’ sustain-
ability in the case of CPU affinity. We demonstrate that core𝐼𝑛𝑓 𝑟𝑎
delivers up to 8× higher IPC and 23× higher instructions per
second than core𝐿𝐶𝐴𝑝𝑝 .

• We pin-point that core𝐼𝑛𝑓 𝑟𝑎 creates heat hot spots, increases
the chances of unexpected CPU failures and carries new ther-
mal management challenges. Our experiments running a TCP
echo benchmark on the Demikernel dataplane OS [50] show that
core𝐼𝑛𝑓 𝑟𝑎 generates up to 1.5× more heat than other core𝐿𝐶𝐴𝑝𝑝 .
The organization of this paper is as follows. Sec. 2 introduces

the prevalence of CPU affinity, which is especially required by
infrastructure threads. Then, Sec. 3 characterizes microarchitectural
features of core𝐼𝑛𝑓 𝑟𝑎 and core𝐿𝐶𝐴𝑝𝑝 , and offers insights that help
reason about the unsustainability caused by CPU affinity. Next,
Sec. 4 provides design options on how to mitigate sustainability
problems due to CPU affinity, including a new metric and designs
from OS and system architecture perspectives. Finally, Sec. 5 and
Sec. 6 discuss related works and conclude this paper.

2 THE PREVALENCE OF CPU AFFINITY

In the literature, application threads that require CPU affinity have
been extensively explored [10, 18, 26, 46, 47]. In this paper, we
primarily highlight the prevalence of CPU affinity for infrastructure
threads in the following categories:
• Virtualization overheads can be significantly reduced by exclu-
sively dedicating physical cores (i.e., sidecores [31, 40]) to its user-
level virtualization layer [49] via virtual device emulation. The
sidecore polls guest I/O operations via shared memory regions,
so no VM exits are needed to submit device commands. Moreover,
the user-level NVMe device driver [49] enables sidecores without
user-kernel mode switches.

• As scheduling in the network stack favors a centralized queuing
model for low tail latency [15, 24], system designers dedicate
physical cores to balance loads and dispatch packets to applica-
tion threads [24, 38].

• Low-latency network stacks get rid of high overhead interrupts
and employ dedicated cores to poll device queues to improve
I/O performance [2]. Some work pins network connections on
the same core to improve data locality and reduce coherence
misses [11, 42]. More recent OS designs take advantage of user-
level busy-polling [11, 41, 44, 50] to guarantee microsecond-scale
tail latency. End-to-end low-latency networking systems, such as

MICA [32] and eRPC [25] dedicate polling cores to receive short
requests. Note that low-latency storage stacks behave similarly
and benefit from CPU affinity [6, 29, 31].
In addition, infrastructure administrators stick to this thread-

to-core pinning model for performance scalability, which sacrifices
more sustainability if not handled properly. More cores should be
pinned to infrastructure threads to achieve performance scaling.
Other examples of why CPU affinity is even more essential for
scalable infrastructure management include:
• Distributing and balancing interrupt requests (IRQs) from a par-
ticular I/O device across multiple physical cores can improve in-
terrupt handling throughput to catch up with device scaling [1, 3].

• Servers with multiple NICs or SSDs require the number of polling
cores to scale proportionally [19, 29]. Virtualization further man-
dates 16 extra CPU cores to saturate 12 SSDs [29].

• Since one physical core limits scheduling throughput to under
5 million packets per second [24, 38], further throughput im-
provements come from dedicating multiple cores to the dispatch
threads [24, 53].

3 UNDERSTANDING THE IMPACT OF CPU
AFFINITY ON SUSTAINABILITY

In this section, we demonstrate our findings with respect to unsus-
tainable CPU affinity. Our characterizations suggest that core𝐼𝑛𝑓 𝑟𝑎
and core𝐿𝐶𝐴𝑝𝑝 should be treated differently in terms of lifespan.

Observation Summary: Significant unevenness of IPC, CPU
stalls, instructions per second, and temperature exist between core𝐼𝑛𝑓 𝑟𝑎
and core𝐿𝐶𝐴𝑝𝑝 . Therefore, core𝐼𝑛𝑓 𝑟𝑎 may potentially fail much
sooner due to faster transistor wear-out, leading to more frequent
hardware refreshes and higher embodied carbon emissions.

3.1 Differentiating Infrastructure Cores and
Application Cores

We profile low-level features of cores that have pinned threads for
performance benefits. Our experiments run on Intel Xeon Gold
6145 with 2 sockets, 20 cores per socket, and Mellanox MT27710
ConnectX-4 Lx NIC and Intel NVMe P4600 SSD. We use Linux Perf
as themeasurement tool.We use the pState driver with performance
governor that scales each core’s frequency from 1GHz to 3.7GHz
depending on demand.
IPC comparison. Fig. 1 and Fig. 2 show a comparison of instruc-
tions per cycle (IPC) between core𝐼𝑛𝑓 𝑟𝑎 and core𝐿𝐶𝐴𝑝𝑝 . Fig. 1 illus-
trates the common observation that LC applications usually run at
low IPC between 0.4–1.0, which is corroborated by a plethora of
prior work [9, 14, 26, 47].

In Fig. 2, we profile threads that are used in infrastructure tasks
and that usually require CPU affinity for performance benefits. We
characterize a spectrum of infrastructure tasks that are pinned on
physical cores. Poll1 and Poll2 represent I/O submission/comple-
tion queue busy-polling in DPDK [2] and SPDK [6], respectively.
Router shows an L3 network router program that forwards re-
ceived packets to another by accessing 5-tuple hash objects and
matching a flow table at runtime. Interrupt and Virtualization

2

Mem
Cach

eD
Red

is

Rock
sD

B
Sp

hin
x

Ngin
x

Mon
go

DB
0
1
2
3

Pe
r-c

or
e

IP
C

Figure 1: Application core IPC profiling.

Po
ll1

Po
ll2

Rou
ter

Int
err

up
t

Virtu
aliz

ati
on

Sch
ed

1

Sch
ed

2

Liv
e M

igr
ati

on
0
1
2
3

Pe
r-c

or
e

IP
C

Figure 2: Infrastructure core IPC profiling.

characterizes IPCs of IRQ cores [14] and cores that are dedicated to
performing virtual-to-physical address remapping in the Sidecore
approach [29], respectively. Sched1 and Sched2 represent cores
that are dedicated to scheduling (managing queues and dispatching
requests to other application threads) in Shinjuku [24] and Demik-
ernel [50], respectively. Live Migration shows a QEMU/KVM
managed VM live migration task [45].

As Fig. 2 demonstrates, cores𝐼𝑛𝑓 𝑟𝑎 exhibit 2.8-8× higher IPC than
cores𝐿𝐶𝐴𝑝𝑝 , and this high-IPC characteristic is common acrossmost
infrastructure threads we evaluate. The much higher IPC implies
that core𝐼𝑛𝑓 𝑟𝑎 may wear out faster than core𝐿𝐶𝐴𝑝𝑝 due to their
inherent instruction-level differences. CPU affinity amplifies such
differences and causes unbalanced cores’ lifetime. Next, we perform
detailed analyses to answer the following:
• What is the difference at the microarchitectural-level?
• What metrics would help measure sustainability?

CPU stalls: bad for performance, but good for sustainability.
This work profiles CPU stalls happening in the FrontEnd, BackEnd,
and branch-related pipeline bubbles. The FrontEnd is responsible
for fetching instructions and decoding them into low-level micro-
ops (𝜇Ops). The BackEnd includes 𝜇Op allocation and execution,
including stalls caused by data accesses. Branch stalls are accounted
for when a 𝜇Op get canceled before retiring due to mispredicted
branches.

Fig. 7 shows that only 20–27% CPU cycles are effectively uti-
lized for retiring instructions on cores𝐿𝐶𝐴𝑝𝑝 . This aligns with the
fact that those applications have <1 IPC (shown Fig. 1) which ac-
counts for only ∼20% of the theoretical execution bandwidth of a
Skylake CPU core, whose theoretical peak IPC is 5.0. On the other
hand, busy-polling core𝐼𝑛𝑓 𝑟𝑎 retires instructions during 89% of its
execution cycles.

CPU stalls are the main reason for low effective CPU utilization
of cores𝐿𝐶𝐴𝑝𝑝 . Fig. 3, Fig. 4 and Fig. 6 illustrate that MemCacheD,
Redis and RocksDB suffer from 25–45% FrontEnd stalls, 26–40%
BackEnd stalls and 4–6% Branch stalls, respectively. However, Poll
has few stalls, which explains its much higher IPC when compared
with core𝐿𝐶𝐴𝑝𝑝 .
Stall breakdown analysis. These stalls can be broken down fur-
ther. Our experiments in Fig. 5 show that L1 MPKIs are as high
as 17, while production-level applications are more complex and
can exceed 50 [47]. Recently, applications have become more com-
plex with deeper layering abstractions. For example, instruction
footprints have grown to be 100× larger than the size of an L1

instruction cache [10], which creates long stalls and interference in
the cache hierarchy. Therefore, CPUs waste cycles in the FrontEnd
waiting for codes required by those applications. In contrast, Poll
has only 0.01 MPKI, as shown in Fig. 5. As for BackEnd stalls, the
waiting times due to L2, LLC, main memory or SSD accesses are all
possible contributors. Unlike those cores𝐿𝐶𝐴𝑝𝑝 , core𝐼𝑛𝑓 𝑟𝑎 running
polling threads barely suffer from L2 or lower-level memory data
misses, thus its BackEnd stalls are negligible.

The Branch stalls of Poll only account for 0.01% of CPU cy-
cles. The polling thread sits in a tight loop checking RX queues,
which spins in a While loop whose branch is almost always taken.
Infrastructure threads usually exhibit the following features: (1)
independence from other application or kernel threads, e.g., not
much synchronization, (2) lightweight code block and simplicity,
and (3) repetitiveness in terms of the work they do.

Therefore, unlike cores𝐿𝐶𝐴𝑝𝑝 that go through complicated branch-
ing routines and rely on huge instruction and data sets, cores𝐼𝑛𝑓 𝑟𝑎
do not suffer from many stalls.
Instructions per second deviations. Due to the significant dif-
ference in IPCs, the rate of aging among core𝐼𝑛𝑓 𝑟𝑎 and core𝐿𝐶𝐴𝑝𝑝
may be drastically different, and the inherent characteristics of
infrastructure threads can exacerbate this aging gap.

Take branch instructions in Fig. 8 as an example; nearly all pro-
grams need branch-related microarchitectural components such as
branch predictors and ALUs. We find that polling exercises up to
23×more branch instructions per second. This implies that, besides
higher IPC, the density of branch instructions in polling is also
higher than those in core𝐿𝐶𝐴𝑝𝑝 . This is true because the code block
of each polling While loop is relatively simple and independent.

Worse, the number of branch instructions per second can further
increase with higher core frequency. Up to 875 million instructions
are executed per second when core𝐼𝑛𝑓 𝑟𝑎 is running at 3.67GHz. We
will explore instruction types other than branches in future work.

3.2 State-of-the-Art OS Characterization
Sec. 3.1 shows microarchitectural characteristics, i.e., IPC, L1 MPKI,
CPU stalls and instructions per second, on the core that runs Poll
microbenchmark. In this section, we measure those metrics of
core𝐼𝑛𝑓 𝑟𝑎 running a state-of-the-art OS, Demikernel [50]. We eval-
uate core𝐼𝑛𝑓 𝑟𝑎 that executes TCP and UDP stacks, which involve
polling, scheduling and dispatching packets. Table 1 shows that
this end-to-end system setting corroborates the observations we
summarized in Sec. 3.1. IPCs of core𝐼𝑛𝑓 𝑟𝑎 are 2-6.275× higher than

3

0.8 0.9 1.0 1.1 1.2 1.30
20
40
60
80

100

Fr
on

tE
nd

 S
ta

ll
(%

)

MemCacheD
Redis

RocksDB
Poll

Figure 3: FrondEnd CPU stalls.

0.8 0.9 1.0 1.1 1.2 1.30
20
40
60
80

100

Ba
ck

En
d

St
al

l (
%

)

MemCacheD
Redis

RocksDB
Poll

Figure 4: BackEnd CPU stalls.

0.8 0.9 1.0 1.1 1.2 1.30
5

10
15
20
25
30

L1
 M

PK
I

MemCacheD
Redis

RocksDB
Poll

Figure 5: L1 miss rate.

0.8 0.9 1.0 1.1 1.2 1.30
2
4
6
8

10
12
14

Br
an

ch
 S

ta
ll

(%
)

MemCacheD
Redis

RocksDB
Poll

Figure 6: Branch CPU stalls

0.8 0.9 1.0 1.1 1.2 1.30
20
40
60
80

100

Re
tir

in
g

(%
) MemCacheD

Redis
RocksDB
Poll

Figure 7: Effective CPU utilization.

0.8 0.9 1.0 1.1 1.2 1.30
50

100
150
200
250
300

M
illi

on
 B

_in
st

r/s MemCacheD
Redis
RocksDB
Poll

Figure 8: Branch instructions per sec-
ond on one core@1GHz.

Table 1: Microarchitectural characterizations on DPDK-based
Demikernel network stacks [50] (TCP and UDP) vs. Poll
benchmark (Sec. 3.1). All cores@3.67GHz).

Metric TCP UDP Poll

IPC 2.51 2.03 3.2

L1 MPKI 1.28 5.32 0.01

Branch Instructions 1.1 G/s 1.2 G/s 0.9 G/s

FrontEnd Stall 8.2% 16.1% 3.6%

BackEnd Stall 23.6% 29.3% 9.5%

Branch Stall 1.7% 4.3% 0.3%

Retiring 66.5% 50.3% 86.7%

applications shown in Fig. 1. L1 MPKI of the core𝐼𝑛𝑓 𝑟𝑎 are much
higher than Poll evaluated in Fig. 5, but still much lower than those
of applications. The number of branch instructions per second con-
sistently remains at an intense level, no less than 1.26× higher than
Poll core𝐼𝑛𝑓 𝑟𝑎 @3.67Hz.

3.3 Heat Hot Spots
In addition to the unevenness of IPC and instruction per second,
we find that core𝐼𝑛𝑓 𝑟𝑎 also incurs heat hot spots on a CPU die. We
ran a TCP echo benchmark on Demikernel using its DPDK network
stack over 10 minutes. We measured per-core temperature through
Intel RAPL tool, whose results are shown in Fig. 9. The temperature
of Core1 where Demikernel was pinned for network processing
reaches 53-58◦𝐶 , which generates more heat than any other core.

0 100 200 300 400 500 600
Time (s)

30

35

40

45

50

55

Te
m

pe
ra

tu
re

 (o
C)

Performance Frequency Governor Core Num
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 9: Per-core temperature measurement.

4 DESIGN OPTIONS

This work proposes a few design options for sustainability-aware
CPU affinity, including a new metric, OS designs, and system archi-
tecture designs.

4.1 A New Metric: WTTF
Worst Time to Failure Modeling. Instead of predicting the life-
time of each core through modeling based on thermal/transistor
states, we estimate the worst time to failure (WTTF). Each instruc-
tion does not necessarily wear out the same path or accumulate
the same number of transitions on the same path. However, in the
worst case, as instructions accumulate and whose number reaches
a threshold, the core can be considered as a core that is not 100%
reliable. Such unreliable cores can potentially deliver wrong results
and cannot be fully trusted if running critical code blocks [22]. We

4

use Equ. 1 to calculate WTTF at runtime.

𝑊𝑇𝑇𝐹 =

∞∑︁
𝑛=1

𝐼𝑃𝐶𝑡𝑛 × 𝑓 𝑟𝑒𝑞𝑡𝑛 × 𝑡𝑛 (1)

Where 𝐼𝑃𝐶𝑡𝑛 × 𝑓 𝑟𝑒𝑞𝑡𝑛 gives the number of instructions running
on a core per second; within a time window 𝑡𝑛 when the core is
running at a frequency of 𝑓 𝑟𝑒𝑞𝑡𝑛 and the pinned thread on the core’s
microarchitecture exhibits 𝐼𝑃𝐶𝑡𝑛 , the total number of instructions,
in the worst case, have worn out the weakest path of this core 𝐼𝑃𝐶𝑡𝑛
× 𝑓 𝑟𝑒𝑞𝑡𝑛 × 𝑡𝑛 times.

Instead of figuring out a concrete threshold that represents
WTTF, which is difficult to estimate accurately, we focus on bal-
ancing the relative WTTF between cores.

4.2 OS Perspectives
Sustainability-aware OS thread scheduling. OS-level solutions
would help balance WTTFs of cores𝐼𝑛𝑓 𝑟𝑎 and cores𝐿𝐶𝐴𝑝𝑝 .

There are two options for OS scheduler designs, based on either
user-defined or automated solution. First, we can enable a trans-
parent interface that augments the flexibility of existing interface
implementing thread binding, e.g., Linux cpuset. At runtime, the
new sustainability-aware interface allows dynamic user-defined
binding between threads within a specified cpuset and cores that
age at uneven pace. Second, the OS can migrate and swap affini-
tized threads from one core that has significantly aged or thermally
loaded to another core. Since we expect the age-oriented scheduling
happens infrequently, e.g., monthly or yearly, there is a consider-
able design space which allows us to trade scheduling overheads
for consistency, robustness and complete live management during
migration or swapping.
Affinity-aware thermal management. The heat asymmetry of
cores𝐼𝑛𝑓 𝑟𝑎 and cores𝐿𝐶𝐴𝑝𝑝 due to CPU affinity requires new ther-
mal management policies and mechanisms. For controlling hot
spots, one can either reduce the heat production of cores𝐼𝑛𝑓 𝑟𝑎 , or
balance heat production across cores𝐼𝑛𝑓 𝑟𝑎 and cores𝐿𝐶𝐴𝑝𝑝 . The for-
mer can benefit from existing mechanisms such as Dynamic Voltage
and Frequency Scaling (DVFS). We leave it for future work to un-
derstand the trade-off between energy efficiency, lifetime, and tail
latency [8] when managing cores𝐼𝑛𝑓 𝑟𝑎 through DVFS. For instance,
at low load, lowering the frequency of cores𝐼𝑛𝑓 𝑟𝑎 is beneficial to
save energy and reduce heat dissipation, if tail latency is negligibly
affected. The latter can leverage thermal-aware mechanisms such
as thread migrations and execution throttling [13, 16].

4.3 System Architecture Perspectives
Sustainability-oriented isolation. Alternatively, it is also possi-
ble to pin those threads with highly skewed aging speeds in different
server processors, and group threads with similar aging speeds in
the same physical server. This deployment architecture fundamen-
tally eliminates the need of tracking each core’s aging within each
server and simplifiesmaintenance. One option is to isolate core𝐼𝑛𝑓 𝑟𝑎
on PCIe-attached DPU [5] or IPU [4] which acts as an embedded
processor and is independent of core𝐿𝐶𝐴𝑝𝑝 located on CPUs. This
isolation opens up new motivations for isolating infrastructure and
application threads other than reasons such as interference removal.

The other option is to isolate core𝐼𝑛𝑓 𝑟𝑎 and core𝐿𝐶𝐴𝑝𝑝 on different
CPU servers. For instance, sidecores used for high-performance vir-
tualization can be placed in a remote server [28]. Further, core𝐼𝑛𝑓 𝑟𝑎
CPU servers can use cheaper CPUs with lower cost since core𝐼𝑛𝑓 𝑟𝑎
wears out much faster.
Lifetime-aware co-location. Due to CPU stalls, core𝐿𝐶𝐴𝑝𝑝
has much longer lifetimes than core𝐼𝑛𝑓 𝑟𝑎 . Filling the portion of
core𝐿𝐶𝐴𝑝𝑝 left unused by LC tasks with batch processing applica-
tions is another way to balance the lifetime between core𝐿𝐶𝐴𝑝𝑝
and core𝐼𝑛𝑓 𝑟𝑎 . This approach has been employed in some pro-
posals for high CPU utilization while maintaining predictable tail
latency [20, 34, 35, 52]. For example, Microsoft Bing co-locates LC
and batch jobs on over 90,000 servers [23], and the median machine
in compute clusters at Google hosts 8 applications [51].

5 RELATEDWORK
Some of the prior work focuses on the lifetime of cores𝐿𝐶𝐴𝑝𝑝 . Don-
ald et al. [16] emphasize heat balancing on a CPU dies and ad-
dress the thermal asymmetry among cores that run application
threads. ExtraTime [37] provides an aging analysis framework to
use transistor-level variables to predict aging effects. Facelift [48]
offers aging-aware scheduling among applications and cores to con-
figure the lifetime of a multicore CPU processor. On the other hand,
our paper positions the different characteristics between core𝐿𝐶𝐴𝑝𝑝
and core𝐼𝑛𝑓 𝑟𝑎 and is orthogonal to core𝐿𝐶𝐴𝑝𝑝 lifetime extensions.

Early proposals also advocate leveraging IPC as the metric to
improve energy efficiency [21, 33]. Instead, we characterize IPCs
between core𝐿𝐶𝐴𝑝𝑝 and core𝐼𝑛𝑓 𝑟𝑎 , and use it as an indication to
estimate lifetime. Furthermore, we also introduce instructions per
second, accompanied with IPCs, to estimate cores’ sustainability.

Polling threads that require CPU affinity have been explored by
some researchers considering tail latency and energy efficiency [17,
21, 43]. They propose amortizing the polling-induced performance
and energy overhead by tuning core frequency [2, 43]. This pa-
per extends the focus of CPU affinity beyond polling. We find the
common microarchitectural features across different infrastructure
threads that demand CPU affinity. In addition, our work sheds light
on CPU core lifetime in the context of CPU affinity.

6 CONCLUSIONS
Based on our characterizations, core𝐼𝑛𝑓 𝑟𝑎 are aging much faster
than other cores due to sustainability-unaware CPU affinity. Our
work advocates distinguishing affinitized core𝐼𝑛𝑓 𝑟𝑎 from other
cores to avoid uneven core-aging and heat hot spots, which lead to
more frequent replacement and higher embodied carbon emissions.
In addition, we call for alternative approaches beyond traditional
per-core frequency or voltage tuning [27, 34, 43, 48] to narrow
the aging speed gap. Design options that we offer include OS de-
signs such as instruction intensity aware balancing, heat balancing,
thread isolation and co-location.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their valu-
able comments and helpful feedback. This work was supported by
the Natural Science and Engineering Research Council of Canada,

5

National Science Foundation (NSF) grant CNS-210458, NSF Gradu-
ate Research Fellowships Program, a Canada Research Chair, the
Canadian Foundation for Innovation, VMware and Cisco Systems.

REFERENCES
[1] [n. d.]. ADATA PCIe Gen 5.0 4 SSDs, Project Nighthawk. https://www.adata.

com/en/news/960.
[2] [n. d.]. Data Plane Development Kit. https://www.dpdk.org.
[3] [n. d.]. Ethernet Alliance. https://ethernetalliance.org/technology/2020-

roadmap/.
[4] [n. d.]. Intel Infrastructure Processing Unit (IPU) and SmartNICs. https://www.

intel.com/content/www/us/en/products/network-io/smartnic.html.
[5] [n. d.]. NVidia BlueField 3 DPU. https://www.nvidia.com/content/dam/en-zz/

Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf.
[6] [n. d.]. Storage performance development kit (SPDK). http://www.spdk.io/.
[7] Alaa R. Alameldeen and David A. Wood. 2006. IPC considered harmful for

multiprocessor workloads. IEEE Micro 26, 4 (2006), 8–17.
[8] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene

Zhang. 2022. Treehouse: A case for carbon-aware datacenter software. In Pro-
ceedings of the 2nd Workshop on Sustainable Computer Systems (HotCarbon).

[9] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ranganathan.
2018. Memory hierarchy for web search. In Proceedings of the 24th IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 643–656.

[10] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Mose-
ley, and Parthasarathy Ranganathan. 2019. Asmdb: understanding and mitigat-
ing front-end stalls in warehouse-scale computers. In Proceedings of the 46th
IEEE/ACM International Symposium on Computer Architecture (ISCA). 462–473.

[11] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In Proceedings of the 11th ACM Symposium
on Operating Systems Design and Implementation (OSDI). 49–65.

[12] Kerry Bernstein, David J. Frank, Anne E. Gattiker, Wilfried Haensch, Brian L. Ji,
Sani R. Nassif, Edward J. Nowak, Dale J. Pearson, and Norman J. Rohrer. 2006.
High-performance CMOS variability in the 65-nm regime and beyond. IBM
journal of research and development 50, 4.5 (2006), 433–449.

[13] David Brooks and Margaret Martonosi. 2001. Dynamic thermal management for
high-performance microprocessors. In Proceedings of the 7th IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 171–182.

[14] Shuang Chen, Christina Delimitrou, and Jose F. Martinez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In Proceedings of
the 24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 107–120.

[15] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPCValet: NI-
Driven Tail-Aware Balancing of 𝜇s-Scale RPCs. In Proceedings of the 24th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 35–48.

[16] James Donald and Margaret Martonosi. 2006. Techniques for multicore thermal
management: Classification and new exploration. ACM SIGARCH computer
architecture news 34, 2 (2006), 78–88.

[17] Eric Dumazet. 2017. Busy polling: Past, present, future. In Netdev Conference,
Vol. 2.

[18] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. Acm sigplan notices 47, 4 (2012),
37–48.

[19] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
accelerated networking: SmartNICs in the public cloud. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
51–66.

[20] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020. Caladan:
Mitigating interference at microsecond timescales. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
281–297.

[21] Hossein Golestani, Amirhossein Mirhosseini, and Thomas F. Wenisch. 2019.
Software data planes: You can’t always spin to win. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC). 337–350.

[22] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. 2021. Cores

that don’t count. In Proceedings of the ACM Workshop on Hot Topics in Operating
Systems (HotOS). 9–16.

[23] Călin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,
Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,
and Junhua Wang. 2018. Perfiso: Performance isolation for commercial latency-
sensitive services. In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC). 519–532.

[24] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
ières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive scheduling for 𝜇second-
scale tail latency. In Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 345–360.

[25] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can
be general and fast. In Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 1–16.

[26] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd IEEE/ACM International Symposium on
Computer Architecture (ISCA). 158–169.

[27] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast analytical power management for latency-critical systems. In
Proceedings of the 48th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 598–610.

[28] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel Gordon, and
Dan Tsafrir. 2016. Paravirtual remote i/o. In Proceedings of the 21st ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 49–65.

[29] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo Kim. 2020. FVM:
FPGA-assisted Virtual Device Emulation for Fast, Scalable, and Flexible Storage
Virtualization. In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 955–971.

[30] Kevin M. Lepak, Harold W. Cain, and Mikko H. Lipasti. 2003. Redeeming ipc as a
performance metric for multithreaded programs. In Proceedings of the 12th ACM
International Conference on Parallel Architectures and Compilation Techniques
(PACT). 232–243.

[31] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R.K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. 2020. Leapio: Efficient and portable virtual nvme storage on arm socs. In
Proceedings of the 25th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 591–605.

[32] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In Proceedings
of the 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 429–444.

[33] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: energy-efficient microservices on SmartNIC-
accelerated servers. In Proceedings of the 2019 USENIXAnnual Technical Conference
(ATC). 363–378.

[34] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In Pro-
ceedings of the 42nd IEEE/ACM International Symposium on Computer Architecture
(ISCA). 450–462.

[35] Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-Alberquilla, and Boris
Grot. 2019. Stretch: Balancing qos and throughput for colocated server workloads
on smt cores. In Proceedings of the 25th IEEE International Symposium on High
Performance Computer Architecture (HPCA). 15–27.

[36] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, Tony Stafford,
David Tung, and Venkateshwaran Venkataramani. 2013. Scaling memcache at
facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 385–398.

[37] Fabian Oboril and Mehdi B. Tahoori. 2012. Extratime: Modeling and analysis of
wearout due to transistor aging at microarchitecture-level. In Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
1–12.

[38] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In Proceedings of the 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). 361–378.

[39] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. 2015. The RAMCloud storage
system. ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 1–55.

[40] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haibing Guan.
2018. MDev-NVMe: A NVMe Storage Virtualization Solution with Mediated
Pass-Through. In 2018 USENIX Annual Technical Conference (ATC). 665–676.

[41] Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2015. Arrakis: The operating
system is the control plane. ACM Transactions on Computer Systems (TOCS) 33, 4

6

https://www.adata.com/en/news/960
https://www.adata.com/en/news/960
https://www.dpdk.org
https://ethernetalliance.org/technology/2020-roadmap/
https://ethernetalliance.org/technology/2020-roadmap/
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
http://www. spdk.io/

(2015), 1–30.
[42] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos: Achieving

low tail latency for microsecond-scale networked tasks. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP). 325–341.

[43] George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and Edouard
Bugnion. 2015. Energy proportionality and workload consolidation for latency-
critical applications. In Proceedings of the 6th ACM Symposium on cloud Computing
(SoCC). 342–355.

[44] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: core-aware thread management. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 145–160.

[45] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. 2018. VM Live Mi-
gration At Scale. In Proceedings of the 14th ACM S International Conference on
Virtual Execution Environments (VEE). 45–56.

[46] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
acceleration opportunities for data center overheads at hyperscale. In Proceedings
of the 25th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 733–750.

[47] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F. Wenisch. 2019. Softsku:
Optimizing server architectures for microservice diversity@ scale. In Proceedings
of the 46th IEEE/ACM International Symposium on Computer Architecture (ISCA).
513–526.

[48] Abhishek Tiwari and Josep Torrellas. 2008. Facelift: Hiding and slowing down
aging in multicores. In Proceedings of the 41st IEEE/ACM International Symposium
on Microarchitecture (MICRO). 129–140.

[49] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu, and Gang Cao. 2018. Spdk
vhost-nvme: Accelerating i/os in virtual machines on nvme ssds via user space
vhost target. In Proceedings of IEEE 8th International Symposium on Cloud and
Service Computing (SC2). 67–76.

[50] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar
S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,
Pedro Henrique Pennar, Max Demoulin, Piali Choudhuryr, and Anirudh Badam.
2021. The demikernel datapath os architecture for microsecond-scale datacen-
ter systems. In Proceedings of the ACM 28th Symposium on Operating Systems
Principles (SOSP). 195–211.

[51] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU performance isolation for shared compute clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys).
379–391.

[52] Jiechen Zhao, Natalie Enright Jerger, and Mingyu Gao. 2021. What can chiplets
bring to multi-tenant clouds?. In Cloud Workshop at Proceedings of the 54th
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[53] Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan, Mark C. Jeffrey, and Natalie
Enright Jerger. 2022. Altocumulus: Scalable Scheduling for Nanosecond-scale
Remote Procedure Calls. In Proceedings of the 55th IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 423–440.

7

	Abstract
	1 Introduction
	2 The Prevalence of CPU Affinity
	3 Understanding The Impact of CPU Affinity on Sustainability
	3.1 Differentiating Infrastructure Cores and Application Cores
	3.2 State-of-the-Art OS Characterization
	3.3 Heat Hot Spots

	4 Design Options
	4.1 A New Metric: WTTF
	4.2 OS Perspectives
	4.3 System Architecture Perspectives

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

