
IEEE COMPUTER ARCHITECTURE LETTERS 1

Towards Improved Power Management in Cloud GPUs

Pratyush Patel1, Zibo Gong2, Syeda Rizvi2, Esha Choukse3, Pulkit Misra3, Tom Anderson1, Akshitha Sriraman2

1University of Washington, 2Carnegie Mellon University, 3Microsoft

Abstract—As modern server GPUs are increasingly power intensive, better power management mechanisms can significantly reduce the
power consumption, capital costs, and carbon emissions in large cloud datacenters. This paper uses diverse datacenter workloads to
study the power management capabilities of modern GPUs. We find that current GPU management mechanisms have limited
compatibility and monitoring support under cloud virtualization. They have sub-optimal, imprecise, and non-intuitive implementations of
Dynamic Voltage and Frequency Scaling (DVFS) and power capping. Consequently, efficient GPU power management is not widely
deployed in clouds today. To address these limitations, we make actionable recommendations for GPU vendors and researchers.

Index Terms—Power management, Graphics processors, Super (very large) computers, Servers, Design for power delivery limits.

✦

1 INTRODUCTION

The end of Dennard scaling and rise of accelerators make
power a bottleneck resource in today’s cloud datacenters.
Power drives resource provisioning decisions. Therefore, cloud
providers continually seek new ways to reduce consumption
and ’oversubscribe’ power, i.e., install more servers than allowed
by the power budget based on server peak power consumption.
For example, providers use DVFS to reduce power draw when
servers are lightly utilized [1], they monitor and cap power
to enable oversubscription and reduce provisioning costs [2],
and they adapt power usage to varying green energy supply to
lower emissions [3]. Such power management techniques reduce
overall datacenter costs and improve their carbon efficiency.

Prior work on cloud efficiency has addressed CPUs and
how to improve their power management mechanisms and
interfaces. For example, CPUs expose a wide range of power
and performance counters that guide their run-time power
management decisions; they can scale frequencies per core, en-
abling fine-grained power reduction; they support configurable
DVFS policies spanning performance- and energy-optimized
settings [1]; and they guarantee limited-duration power spikes
for better power provisioning and capping [4].

In contrast, GPUs have to date received less attention. Man-
aging their power more efficiently is especially critical since they
drive many vital modern workloads, such as deep learning (DL),
high-performance computing (HPC), and graphics processing.
Further, emerging GPUs are rated at up to 700W TDP, more
than twice as much as a large server CPU. Given that servers
typically host 4 to 16 GPUs, the power provisioned for a single
GPU server may well exceed 4000W. Finally, the in-band power
management mechanisms GPUs do offer, such as DVFS and
power capping, are neither well documented nor characterized
across a broad range of cloud applications.

To narrow these gaps, we comprehensively characterize
power management features on modern server GPUs and iden-
tify their limitations from a cloud provider’s perspective. We find
that GPUs expose limited run-time information to orchestration
platforms to enable dynamic power management decisions.
Their DVFS policy is power hungry, lacks configurability, and
performs poorly under power caps or with sharing. Further,
they lack adequate power capping support since caps must be
specified in band and can be exceeded due to power spikes and
sub-optimal implementations. These pitfalls prevent providers
from effectively deploying GPU power management at scale,
at the cost of potentially millions of dollars and considerable

stranded power [2], [5]. We recommend concrete actions for
GPU vendor and researcher consideration to more efficiently
power GPUs in the cloud.

2 LANDSCAPE OF CLOUD GPUS

We start by surveying cloud GPU deployments and their power
management interfaces and mechanisms.
GPU Types. Different GPUs target different workloads. Cloud
GPU workloads can be broadly categorized into graphics, HPC,
and DL. Graphics workloads run well on GPUs that specialize in
texture cores and Graphics-DDR memories, such as the NVIDIA
A10 and RTX A5000. Compute workloads like HPC and DL run
well on GPUs specialized with tensor cores and High-Bandwidth
Memories (HBM), such as the NVIDIA A100 and T4. Both GPU
types are commonly deployed in today’s datacenters.
Virtualization. GPUs can be virtualized using fixed or hardware-
mediated passthrough.1 Clouds typically use fixed passthrough,
such as Hyper-V’s Discrete Device Assignment (DDA), to
achieve near-native performance by dedicating full GPUs to
individual virtual machines (VMs). In this scenario, the hyper-
visor completely relinquishes GPU control to the VM upon
assignment, thereby preventing transparent, in-band power
management by the cloud provider. In contrast, hardware-
mediated passthrough via Single Root IO Virtualization (SR-
IOV) shares GPUs across multiple VMs and the hypervisor, an
approach that requires hardware support and is available only
on newer GPUs. Perhaps owing to its newness, vendors do
not currently offer fine-grained monitoring and management
support for GPUs virtualized in this manner.
Power Provisioning. Historically, a safe rule of thumb for server
power provisioning has been to allocate the rated Thermal
Design Power (TDP) in expectation that the actual power usage
will be lower [6]. However, GPUs may incur power spikes of up
to 3× their TDP when powering on many on-chip components
simultaneously [7]. In fact, recent Intel ATX 3.0 standards have
legalized such limited-duration power excursions [8]. Poor
adherence to power limits causes GPU vendors to recommend
Power Supply Units (PSUs) over 2× the device TDP, causing
significant power stranding, i.e., overprovisioned power that
cannot be repurposed.

1. GPUs can also be virtualized using API remoting, which we do not
address here because it is not typically deployed today.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3278652

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 16:30:26 UTC from IEEE Xplore.  Restrictions apply. 



IEEE COMPUTER ARCHITECTURE LETTERS 2

Out-of-Band Management. Cloud providers require Out-Of-
Band (OOB) power management for large-scale orchestration.
It is also used as a reliable fallback if in-band power capping
fails [2]. Unfortunately, no standard OOB management protocol
exists for GPUs today. Some vendors have proprietary OOB
interfaces; e.g., NVIDIA’s SMBPBI allows power caps to be
set [9]. However, these protocols lack fine-grained telemetry and
power control commands.
In-Band Management. GPU vendors provide various software
tools for GPU monitoring and configuration on bare-metal and
container clusters [10], [11]. Cloud providers cannot deploy these
tools if the GPU is assigned to the VM under fixed-passthrough
virtualization. However, we study them for insights into existing
GPU power management features since it can help inform future
mechanisms and interfaces.

NVIDIA provides two such tools: SMI [12] and DCGM [11].
SMI can configure GPU operating modes such as power caps,
clock frequencies, and multi-tenancy, and can monitor basic
run-time statistics, such as GPU utilization, memory usage, and
power draw. DCGM, a management framework for GPU clus-
ters, supports health checks and power management, and it can
monitor performance counters like Streaming Multiprocessor
(SM) occupancy, DRAM activity, and PCIe TX/RX usage.
Frequency Scaling. GPUs expose two clock domains—SM and
memory—whose operating frequencies impact power draw.
These frequencies can be varied via hardware DVFS policies
or software frequency pinning. On NVIDIA GPUs, hardware
DVFS is enabled by default and it can rapidly adapt voltage
and frequencies based on utilization, thereby improving energy
proportionality [13].2 Frequency pinning, though slower, can
be used in an application-aware manner to achieve desired
performance-energy trade-offs [14].3 The set of configurable
frequencies depends on the GPU type, as shown in Table 1. SM
clock frequencies on most NVIDIA GPUs can be set in 15MHz
increments. Memory clocks are configurable on GDDR memory
GPUs like the A5000 but not on HBM2 GPUs like the A100.
Power Capping. Power capping limits GPU power consumption
to a software-specified value by throttling frequencies appropri-
ately. This mechanism is similar to RAPL for CPUs, which cloud
providers use for server power capping [2]. By default, GPU
power caps are set to the device TDP but they can be configured
to a lower range as shown in Table 1.
Sharing. Since many applications do not fully utilize GPUs,
vendors have introduced temporal and spatial sharing to pack
multiple workloads on the same device. Temporal sharing times-
lices applications, whereas spatial sharing partitions the GPU
to run applications in parallel. Cloud providers use NVIDIA’s
virtual GPUs (vGPUs) for timeslicing VMs and Multi-Instance
GPU (MIG) partitions for spatial sharing [15]. Unfortunately,
NVIDIA does not currently offer the ability to individually
monitor or configure the power usage of VMs sharing a GPU.

3 GPU POWER MANAGEMENT ANALYSIS

We next characterize in-band power management features on
modern GPUs and identify takeaways for future improvements.

3.1 Experimental Setup
We run 38 single-device workloads spanning three categories
(Table 2) on three NVIDIA GPUs (Table 1). Workload/GPU
combinations are run with a range of SM frequencies, memory

2. We refer to NVIDIA’s hardware DVFS policy as DVFS in this paper.
3. Most NVIDIA server GPUs do not support explicit voltage control.

TABLE 1: Power cap and clock frequency ranges on our GPUs.

GPU Power Caps SM Freqs Mem Freqs

A100 150–300 W 0.2–1.4 GHz 1.5 GHz
RTX A5000 100–230 W 0.2–2.1 GHz 0.4–8 GHz
RTX 6000 100–260 W 0.3–2.1 GHz 0.4–7 GHz

TABLE 2: Cloud GPU workloads.

Graphics Deep Learning HPC

Suite Superposition [17] Multiple [16], [18] SPECAccel [19]
#Apps 8 12 18

GPU API OpenGL CUDA OpenCL

frequencies, power caps, and MIG statuses. We use default
benchmark configurations. DL training workloads are run for
one epoch. DL inference workloads are run with different batch
sizes using NVIDIA Triton perf_analyzer [16]. Each run is
monitored using SMI and DCGM. We discuss a subset of results.

3.2 Frequency Scaling

Power vs. Performance Trade-offs. Fig. 1 shows the impact
of frequency scaling on power draw and performance on the
A100 GPU. We make four observations. First, DVFS closely
matches the highest frequency configuration. Second, based on
the SM frequency sensitivity, we find there is a good mix of
compute-bound and memory-bound workloads. About half of
the HPC and DL workloads are memory-bound, while most
graphics workloads are compute-bound. Third, for the memory-
bound workloads, the performance difference between DVFS
and 1.2GHz fixed frequency configuration is relatively small—
1.6% lower on average. Finally, compute-bound workloads are
very sensitive to SM frequencies: performance at 1.2GHz is 13%
lower on average than DVFS.

Next, since peak power consumption drives power provi-
sioning decisions, we investigate in Fig. 2(a) the peak power
reduction opportunity under minimal performance loss. Specifi-
cally, for HPC and DL workloads, we limit performance loss to
within 3% of DVFS. For graphics workloads, we use a minimum
frame rate of 60 FPS as a service-level objective (SLO). We find
that the workloads draw an average of 27.5W (∼20%) lower
peak power (up to 114W lower for inference workloads) with
minimal performance loss using fixed frequencies. This result
is an underestimate because we evaluate frequencies only in
steps of 100+MHz—finer-grained steps would yield greater
reductions. RTX GPUs show similar results; they provide an
additional opportunity to reduce the memory frequency for
compute-bound workloads with minimal performance impact.
T1: GPU DVFS draws high peak power with no significant perfor-
mance benefits for many workloads..
Energy Efficiency. Batch workloads like HPC and DL training
can benefit from reducing energy usage to lower costs and
emissions [20]. To estimate the energy reduction opportunity, we
compare the energy usage of fixed-frequency batch workload
configurations to that of DVFS. Fig. 2(b) plots the maximum
energy reduction across all evaluated frequencies relative to the
energy used by DVFS. We find that the energy usage is typically
minimized at middling clock frequencies rather than at the
extremes [14]. This behaviour occurs because low frequencies
significantly slow down workloads, whereas high frequencies
draw considerable power. Since DVFS closely tracks the highest
frequency configuration, it performs sub-optimally, resulting
in a 1.3× higher energy usage (geomean) than that of the best
frequency configuration across workloads.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3278652

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 16:30:26 UTC from IEEE Xplore.  Restrictions apply. 



IEEE COMPUTER ARCHITECTURE LETTERS 3

0 5

200

400
stencil

0 5

100
200
300

fft

0 10

100

200

spmv

0.0 2.5

100

200
mriq

0 20
40

60

kmeans

0 20

100
200
300

resnet50

0 50

100
200
300

wideresnet

Time (s)

Po
we

r (
W

)
1.4 GHz 1.2 GHz 1.1 GHz DVFS

(a) Power draw over time for five HPC and two DL training workloads. The X-axis implicitly indicates workload latency.

130.6 130.9
75

100

densenet-1b

1002 1008

100

200

inception-32b

5150 5200

100

200
resnet50-32b

150 200
75

100

sp_low

75 100
75

100
125

sp_med

30 40

100

150
sp_extreme

100 125
75

100
125

vr_oculus

Performance (QPS or FPS)

Po
we

r (
W

)

(b) Power draw vs. performance for three DL inference and four Graphics workloads. Circles show averages, and whiskers show 5th–95th percentiles.

Fig. 1: Power consumption and performance on A100 at different SM frequency configurations.

0 50 100
Peak power reduction (W)
under performance bound

0
25
50
75

100

%
 A

pp
s

(a) Peak power

0 30 60
Max. energy reduction
relative to DVFS (%)

(b) Energy
HPC Training Inference Graphics

Fig. 2: (a) Peak power reduction under a performance
bound. (b) Maximum energy reduction for batch

workloads relative to DVFS.

0 50
Time (s)

0

50

Po
we

r (
W

)

(a) RTX 6000

0 50
Time (s)

0

50

100

(b) A100
Start Triton Send requests Requests complete

Fig. 3: GPU power draw timeseries for the Triton
Inference Server on (a) RTX 6000 and (b) A100.

1.00 1.25 1.50 1.75
Relative Speedup over DVFS

0
25
50
75

100

%
 A

pp
s

8GHz 5GHz

Fig. 4: Fixed memory frequency
speedup over DVFS for HPC

apps on A5000 with 100W cap.

0 20 40
0

100

200

300

Po
we

r (
W

)

(a) ResNet50 on A100

0 50 100
Time (s)

0

100

200

300
(b) WideResNet on A100

0 20 40
0

100

200

(c) spmv on A5000
High power cap Low power cap Low power cap + 5GHz mem freq

Fig. 5: Power cap violations under the threshold power limits.

T2: GPU DVFS is energy inefficient for batch workloads.

Idle Power Draw. If a GPU idles with compute state still
loaded, DVFS runs it at the highest frequency for some duration
(possibly forever), causing an unnecessarily high power draw.
Fig. 3 shows an example by spinning up NVIDIA Triton
instances on the RTX 6000 and A100 GPUs and making inference
requests before letting the servers idle. For RTX 6000, DVFS runs
at maximum frequency for about 20 seconds after GPU use
and then reverts to minimum (∼50W higher). On A100, DVFS
continuously runs at maximum frequency after Triton is loaded
(∼20W higher than minimum). We observe similar behaviour
when a CUDA context is opened, regardless of whether the GPU
is actually used. Retaining high GPU frequency, potentially in
anticipation of future work, is likely unnecessary since hardware
DVFS can scale frequencies within nanoseconds [13].
T3: Power draw is avoidably high on idle-but-allocated GPUs.

Non-Intuitive Frequency Throttling. GPU clock frequencies
are typically throttled when power or temperature limits are
exceeded. Such throttling can prevent maximal utilization of
the GPU. Unfortunately, we observe unexpected throttling
patterns that could cause issues in production deployments.
Specifically, A5000 throttles memory clock frequency by 5% from
the maximum when running workloads, even if the frequency is
explicitly configured otherwise and no power or thermal limits
are reached. NVIDIA communicated that they implement such
memory clock throttling for stable performance on memory-
heavy workloads. However, we found that it triggers on all
workloads that we tested.
T4: Undocumented patterns in GPU frequency throttling may cause
unexpected performance and power draw behaviours.

3.3 Power Capping

Performance Under a Power Cap. Fig. 4 shows that for HPC
workloads under a 100W power cap, DVFS performs 23% worse
on average (up to 1.72×) than a fixed 5GHz memory frequency
configuration on A5000. In contrast, DVFS performance closely
matches that of the 8GHz (highest) memory frequency config-
uration. This occurs because a limited power budget must be
distributed between SMs and memory. When throttling clocks,
DVFS never scales down memory frequency below 5% from
the maximum even though the SM frequency may throttled
down to the minimum. Therefore, when running compute-
bound workloads, power that could have been supplied to the

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3278652

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 16:30:26 UTC from IEEE Xplore.  Restrictions apply. 



IEEE COMPUTER ARCHITECTURE LETTERS 4

SMs to enable higher performance is unnecessarily consumed to
maintain a high memory clock frequency.
T5: GPUs poorly allocate power between SMs and memory.
Power Limit Violations. Fig. 5 shows that workloads may
exceed power limits under three scenarios: (a) a short power
spike, typically at the start of an intensive phase of the
workload—e.g., ResNet50 and stencil exceed power limits
by up to 38%; (b) a zig-zag pattern of power spikes for power-
intensive, time-varying workloads—e.g., WideResNet causes
repeated power spikes up to 15% over the power limit; and
(c) a long, continuous power cap violation for memory-intensive
workloads under a low cap (because DVFS does not throttle
memory frequencies)—e.g., spmv under a 100W power cap
on A5000 actually draws 120W. We confirm that spmv meets
the power cap if the memory frequency is explicitly lowered
to 5GHz. Power cap violations and a lack of fallback OOB
capping mechanisms limit oversubscription since additional
power headroom must be provisioned.
T6: GPU power capping exceeds set limits, limiting oversubscription.

3.4 GPU Sharing

Shared Clock Domains. All MIG partitions share the same
GPU clocks, often causing high power usage if there is a
mismatch in desired frequencies. To show this behaviour, we
run spmv and vgg16-training separately on A100 with 2 MIG
partitions, at each workload’s lowest feasible SM frequency
under a 3% bound on performance loss from DVFS. We also
run them together under the same configuration. We then
estimate the peak dynamic power (by subtracting idle power
from measured power) in the three scenarios: (1) spmv-only
draws 66W at 0.8GHz, (2) vgg16-only draws 100.9W at 1.4GHz,
and (3) together they draw 192.9W at 1.4GHz, which is 26W
higher than the sum when running them separately. When run
together, the spmv partition is forced to operate at 1.4GHz to
meet vgg16’s performance constraints.
T7: Underutilized GPU partitions unnecessarily consume high power
due to a shared clock domain.

4 CALL TO ACTION

Based on these takeaways, we conclude by laying out recommen-
dations for improving GPU power management in the cloud.
Improving DVFS. DVFS is performance optimized under TDP;
however, it is wasteful from an energy perspective (T1, T2).
GPUs should offer software-configurable DVFS policies that span
a spectrum from performance to energy optimized, similar to
Linux CPU power governors. Cloud providers or users can then
configure the GPU based on their desired objectives [1]. Further,
DVFS does not correctly throttle memory frequencies, which can
lead to sub-optimal and occasionally incorrect behaviour (T4,
T5). Since capping is critical to achieving oversubscription, future
DVFS policies should control memory frequencies so that workloads
can still achieve good performance under a cap.
Reducing Idle Power. GPUs are often allocated but idle; for
example, the median GPU job on HPC clusters is idle for 16%
of its lifetime [5]. Such GPUs may consume higher power
than necessary (T3), reducing overall energy efficiency and
oversubscription. Given fast hardware DVFS support [13], idle-
but-allocated GPUs should be run at the lowest frequency, similar to
CPUs idling in low power C-states with applications loaded in
memory. Furthermore, the controls for sending the GPU into these
lower power states should be exposed to the software.
Fixing Power Capping. GPU power spikes can significantly
exceed power caps, which limits oversubscription (T6). To

resolve this, GPU vendors should restrict power spikes to fixed,
small time constants similar to CPUs. GPUs also currently support
a narrow range of power caps (Table 1). Emulating lower caps
requires software to explicitly set frequencies, which is slow and
error prone. Instead, GPUs should offer a wider range of power
caps to simplify capping and improve oversubscription.
Partitioning Clock Domains. MIG partitions may wastefully
draw power due to a shared clock domain (T7). It would be
worthwhile to explore whether the operational power savings from
separating clock domains (similar to CPU cores) is more beneficial
than its design complexity and costs.
Developing Virtualized Management. Current out-of-band
GPU monitoring and management mechanisms are vendor-
specific and incompatible with virtualized deployments, as
noted in Sec. 2. It is critical to develop and standardize cloud GPU
power management interfaces to realize benefits at scale. Providers
would particularly benefit from detailed run-time metrics and
configurability per GPU (or per MIG partition) at low overhead, both
OOB and in band.

ACKNOWLEDGMENTS

We would like to thank Sandy Kaplan. This work is supported
by NSF grant CNS-2104548 and grants by VMware and Cisco.

REFERENCES

[1] D. Lo and C. Kozyrakis, “Dynamic management of TurboMode in
modern multi-core chips,” in HPCA, 2014.

[2] A. G. Kumbhare et al., “Prediction-based power oversubscription
in cloud platforms,” in USENIX ATC, 2021.

[3] N. Bashir et al., “Enabling sustainable clouds: The case for virtual-
izing the energy system,” in SoCC, 2021.

[4] “12th Generation Intel Core Processors, Datasheet,” Intel, 2022.
[5] B. Li et al., “AI-enabling workloads on large-scale GPU-accelerated

system: Characterization, opportunities, and implications,” in
HPCA, 2022.

[6] X. Fan et al., “Power provisioning for a warehouse-sized computer,”
ACM SIGARCH Computer Architecture News, 2007.

[7] A. Mpitziopoulos. Intel’s ATX v3.0 PSU Standard Has More Power
for GPUs. [Online]. Available: https://www.tomshardware.com/
news/intel-atx-v3-psu-standard

[8] Intel Introduces New ATX PSU Specifications. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/newsroom/
news/intel-introduces-new-atx-psu-specifications.html

[9] NVIDIA A30 GPU Accelerator Product Brief. [Online]. Avail-
able: https://www.nvidia.com/content/dam/en-zz/Solutions/
data-center/products/a30-gpu/pdf/a30-product-brief.pdf

[10] AMD ROCm. [Online]. Available: https://www.amd.com/en/
graphics/servers-solutions-rocm

[11] NVIDIA Data Center GPU Manager. [Online]. Available:
https://developer.nvidia.com/dcgm

[12] NVIDIA System Management Interface. [Online]. Available: https:
//developer.nvidia.com/nvidia-system-management-interface

[13] S. Bharadwaj et al., “Predict; do not react for enabling efficient fine
grain DVFS in GPUs,” arXiv, 2022.

[14] Z. Tang et al., “The impact of GPU DVFS on the energy and
performance of deep learning: An empirical study,” in e-Energy,
2019.

[15] NVIDIA A100 80GB PCIe GPU Product Brief. [Online]. Avail-
able: https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/a100/pdf/PB-10577-001 v02.pdf

[16] NVIDIA Triton Inference Server. [Online]. Available: https:
//github.com/triton-inference-server/server

[17] Superposition 2017. Unigine. [Online]. Available: https://
benchmark.unigine.com/superposition

[18] GitHub. PyTorch CIFAR100. [Online]. Available: https://github.
com/weiaicunzai/pytorch-cifar100

[19] SPEC ACCEL benchmark suite. [Online]. Available: https:
//www.spec.org/accel/

[20] J. You et al., “Zeus: Understanding and optimizing GPU energy
consumption of DNN training,” in NSDI, 2023.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3278652

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 16:30:26 UTC from IEEE Xplore.  Restrictions apply. 


